www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Summe von Mengen
Summe von Mengen < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von Mengen: Konvexivität zeigen
Status: (Frage) überfällig Status 
Datum: 19:34 Sa 31.10.2009
Autor: a_la_fin

Aufgabe
Es seien die Mengen X:= [mm] {(x_1, x_2) \in \IR^2 : x_1 = 0, x_2 \le 0} [/mm] und
Y:= [mm] {(y_1, y_2) \in \IR^2 : y_1 > 0, y_2 \ge \bruch{1}{y_1}} [/mm] gegeben. Zeigen Sie, dass X und Y konvex und abgeschlossen sind, die Summe X+Y:= {(x+y) [mm] \in \IR^2 [/mm] : x [mm] \in [/mm] X, y [mm] \in [/mm] Y} aber offen im [mm] \IR^2 [/mm] ist.

Hallo zusammen,

ich habe leider Probleme mit dieser Aufgabe. Ich habe zuerst gezeigt, dass X konvex ist, das ist relativ trivial allerdings wollte ich fragen, ob man das auch ohne Fallunterscheidung machen kann?
Dann wollte ich zeigen, dass Y konvex ist:
Y konvex [mm] \gdw (y_1, y_2), (y_1', y_2') \in [/mm] Y , [mm] \lambda \in [/mm] [0,1] :
[mm] \lambda*(y_1, y_2) [/mm] + [mm] (1-\lambda)*(y_1', y_2') \in [/mm] Y [mm] \gdw [/mm]
[mm] (\lambda*y_1 [/mm] + [mm] y_1' [/mm] - [mm] \lambda*y_1' [/mm] , [mm] \lambda*y_2 [/mm] + [mm] y_2' [/mm] - [mm] \lambda*y_2') \in [/mm] Y [mm] \gdw [/mm]
[mm] \lambda*y_1 [/mm] + [mm] y_1' [/mm] - [mm] \lambda*y_1' [/mm] > 0  [mm] \wedge \lambda*y_2 [/mm] + [mm] y_2' [/mm] - [mm] \lambda*y_2' \ge \bruch{1}{\lambda*y_1 + y_1' - \lambda*y_1'} [/mm]
[mm] \lambda*y_1 [/mm] + [mm] y_1' [/mm] - [mm] \lambda*y_1' [/mm] = [mm] \lambda*y_1 [/mm] + (1- [mm] \lambda)*y_1' [/mm] > 0 , da [mm] \lambda*y_1 [/mm] > 0 , [mm] (1-\lambda) [/mm] > 0 und [mm] y_1' [/mm] > 0
n.z.Z.: [mm] \lambda*y_2 [/mm] + [mm] y_2' [/mm] - [mm] \lambda*y_2' \ge \bruch{1}{\lambda*y_1 + y_1' - \lambda*y_1'} \gdw [/mm]
[mm] (\lambda*y_1 [/mm] + [mm] y_1' [/mm] - [mm] \lambda*y_1')*(\lambda*y_2 [/mm] + [mm] y_2' [/mm] - [mm] \lambda*y_2') \ge [/mm] 1.
So diese Ungleichung habe ich auf verschiedene Arten versucht zu zeigen, bin aber bisher auf kein zufriedenstellendes Ergebnis gekommen.
Der einfachste Ansatz ist ja folgender: ... [mm] \gdw \lambda*y_2 \ge \bruch{1}{\lambda*y_1} [/mm] (1) [mm] \wedge y_2' \ge \bruch{1}{y_1'} [/mm] (2) [mm] \wedge -\lambda*y_1 \ge \bruch{1}{-\lambda*y_1'} [/mm] (3)
(2) trifft ja laut Voraussetzung [mm] (y_1', y_2') \in [/mm] Y zu, bleiben also (1) und (3) zu zeigen.
(1) habe ich mit [mm] \lambda [/mm] erweitert: [mm] ...\gdw \lambda^2*y_2 \ge \bruch{1}{y_1} [/mm] , aber das kann ich nicht zeigen. Bzw. es sieht sogar so aus, als würde das NICHT stimmen (?).
Wenn ich dieses Problem überwunden habe, weiß ich dann leider auch nicht, wie ich die Abgeschlossenheit zeigen soll.
Es wäre nett, wenn mir jemand weiterhelfen könnte...
LG

        
Bezug
Summe von Mengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mi 04.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]