www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Summe von 4 Quadraten
Summe von 4 Quadraten < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe von 4 Quadraten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Di 23.01.2007
Autor: Denny22

Aufgabe
Sei [mm] $a\in\N$ [/mm] beliebig. Man zeige:

   [mm] $\exists\,n\in\IN_{0}:a=8\cdot 4^n\quad\Longleftrightarrow\quad\nexists\,x,y,z,u\in\IN:x^2+y^2+z^2+u^2=a$ [/mm]

Hallo an alle,

ich weiß zwar, dass ich den Beweis über Induktion zeigen muss, komme aber trotzdem nicht weiter. Wäre toll wenn mir jemand ein wenig helfen könnte oder eine Quelle kennt, in der der Beweis behandelt wird.

Ich danke euch

Gruß
Denny

        
Bezug
Summe von 4 Quadraten: Quadratische Reste mod 8
Status: (Antwort) fertig Status 
Datum: 10:00 Mi 24.01.2007
Autor: moudi

Hallo Denny

Mit der richtigen Idee ist die Sache ziemlich einfach. Betrachte die Gleichung Modulo 8.

Dann ist a=0 mod 8.

Modulo 8 sind die alle Quadrate entweder 0,1,4. Daraus kann man schliessen, dass keine der Zahlen x,y,z,u ungerade sein kann.

Daher sind x,y,z,u alle gerade, und man kann die Gleichung durch 4 dividieren.

Aus der Lösung für ein a mit n folgt daher die Lösung für ein a mit n-1. Das kann man  iterieren bis n=1 d.h. a=8 und dann nochmals(!) d.h. a=2 und dort ist es trivial.

Der Beweis zeigt, dass diese Zahlen nur die Summe von 2 positiven Quadraten sein können, da [mm] $2=1^2+1^2$. [/mm]

mfG Moudi

Bezug
                
Bezug
Summe von 4 Quadraten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Mi 24.01.2007
Autor: Denny22

Hallo

danke zunächst einmal für die Antwort. Mir ist soweit alles klar bis auf eines:

Wieso kann man schließen, dass keine der Zahlen $x,y,z,u$ ungerade sein können?

Danke nochmals
Gruß
Denny

Bezug
                        
Bezug
Summe von 4 Quadraten: Beantwortet
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Mi 24.01.2007
Autor: Denny22

Hat sich erledigt. Bin selbst darauf gekommen.

Danke trotzdem nocheinmal.

Ciao
Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]