www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Summe über 1/k von 1 bis n
Summe über 1/k von 1 bis n < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe über 1/k von 1 bis n: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 22:10 So 24.10.2004
Autor: Mialein

Ich habe ein Problem mit folgender Aufgabe:

Beweisen Sie, dass für jedes n [mm] \in \IN [/mm] die Summe
1 +  [mm] \bruch{1}{2} [/mm] +  [mm] \bruch{1}{3} [/mm] + ...+  [mm] \bruch{1}{n} [/mm]
keine ganze Zahl ist.

Ich habe mir überlegt, dass wenn man die Summenformel hätte, man einfach zeigen könnte, dass der ggT(Nenner, Zähler)=1 ist.

Ich finde die Summenformel aber in keiner Formelsammlung und ich in auch zu blöd sie selbst aufzustellen (z.b.  [mm] \bruch{2n!-1}{n!} [/mm] stimmt leider nur bis n=3)

Ich bräuchte nur einen Tipp, wie ich auf die Summenformel komme, außer dieser Lösungsweg ist völlig falsch.

Ich hatte auch schon überlegt, ob man es vielleicht zeigen könnte, wenn man gerade und ungerade Folgenglieder betrachtet, bin damit aber auch nicht weitergekommen

Anschaulich ist ja klar, dass es niemals eine ganze Zahl sein kann, nur das formal zu zeigen?

Bin morgen erst wieder abens zu Hause, werde also vorher nicht reagieren.

Viel Grüße und schon mal vielen Dank!


Entschuldigung, ich wollte den Artikel eigentlich ins Uni-Forum stellen, weiß aber nicht, wie ich das nachträglich ändern kann, habe mich vorhin leider verguckt!

        
Bezug
Summe über 1/k von 1 bis n: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Mo 25.10.2004
Autor: Irrlicht

Hallo Mialein,

Ok, nun der nächste Versuch von mir. *g* (Langsam gewöhne ich mich ans Editieren.)
Stelle die Summe dar als a/b, wobei b = kgV(2,...,n) ist. Schreibe b = [mm] 2^r [/mm] l mit l ungerade. Wenn es uns nun gelänge, a als ungerade nachzuweisen, wären wir fertig oder? Vielleicht fällt mir dazu nochwas ein. *gerade herumbeweis*

Liebe Grüsse,
Irrlicht



Bezug
                
Bezug
Summe über 1/k von 1 bis n: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:05 Mo 25.10.2004
Autor: Irrlicht

Sorry, ich bin oben gar nicht mehr ins Bearbeiten-Fenster gekommen und es steht trotzdem da, ich würde bearbeiten. *schulterzuck* Dann eben so:
a ist ungerade, denn wenn du die Brüche auf den Hauptnenner b erweiterst, dann kommst du irgenwann an einen Bruch mit der grössten Zweierpotenz kleiner gleich n im Nenner. Der Summand der durch Erweiterung auf b entsteht ist dann ungerade, aus allen anderen Brüchen kommen nur gerade Summanden hinzu.
Jetzt müsste man das nur formalisieren.

Grüsse,
Alex

PS.: Hab deine PN gelesen Mia, ich schreib es trotzdem noch hierhin. :)

Bezug
        
Bezug
Summe über 1/k von 1 bis n: Antwort
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:35 Mo 25.10.2004
Autor: Mialein

Ich habe eine (wie ich finde) ganz tolle Lösung in einem Buch entdeckt, leider sehr knapp. Ich denke, dass ich es trotzdem verstanden habe und werde jetzt versuchen die Lösung hier (etwas ausführlicher) vorzustellen:

Gegenannahme:  [mm] \summe_{k=1}^{n} \bruch{1}{k}= [/mm] z [mm] \in \IZ [/mm]
[mm] \Rightarrow \summe_{k=1}^{n} \bruch{n!}{k}= [/mm] zn! [mm] \in \IZ [/mm]

[mm] \Rightarrow \forall [/mm] i [mm] \not= [/mm] k   [mm] i|\bruch{n!}{k} [/mm] = [mm] \bruch{1*2*3....i...n}{k} [/mm]

[mm] \bruch{n!}{ik} [/mm] = [mm] \bruch{1*2*3....[s]i[/s]....[s]k[/s]...n}{[s]ik[/s]} \in \IN [/mm]

Sei nun k die größte Primzahl [mm] \le [/mm] n

[mm] \Rightarrow [/mm] k teilt nicht  

[mm] \bruch{1*2*3....i....[s]k[/s]...n}{[s]k[/s]} [/mm]             (wg eindeutiger Primfaktorzerlegung)

Wenn in einer summe alle Summanden bis auf einen durch k teilbar sind, kann die Summe nicht durch k teilbar sein.

Widerspruch zur Gegenannahme.                     [mm] \Box [/mm]

Falls es jemanden interessiert: ich habe eine rekursive Formel für die Summe aufgestellt:
[mm] x_{n}= \bruch{a_{n}}{n!}; a_{n+1}=a_{n}+n!; a_{n}=1 [/mm]
damit kann man aber eigentlich auch nicht viel anfangen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]