Summe stetiger Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo,
wie beweise ich, dass die Summe zweier stetigen Funktionen wieder stetig ist???
Ich habe diese Frage in keinem weiteren Forum gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:56 Mo 16.08.2004 | Autor: | andreas |
hi vicomte1982
ich mache das jetzt mal für funktionen $f, g: D [mm] \longrightarrow \mathbb{R}, \; [/mm] D [mm] \subset \mathbb{R}$, [/mm] wobei sich dies leicht auch verallgemeinern lässt.
das einzige was zu tun ist ist im prinzip summanden umordenen und die dreieicksungleichung anwenden.
seien nun $f$ un $g$ in allen punkten [mm] $x_0 \in [/mm] D$ stetig, d.h.
[m] \forall \, \varepsilon > 0 \; \exists \, \delta_f > 0 \; \forall x \in D: | x - x_0| < \delta_f \Longrightarrow|f(x) - f(x_0)| < \varepsilon [/m]
[m] \forall \, \varepsilon > 0 \; \exists \, \delta_g > 0 \; \forall x \in D: | x - x_0| < \delta_g \Longrightarrow|g(x) - g(x_0)| < \varepsilon [/m]
betrachte [m] x_0 \in D, \; \varepsilon > 0 [/m] beliebig aber fest, dann gilt für alle [m] x \in D [/m], für die [m] |x - x_0| < \min\{\delta_f, \delta_g \} [/m] gilt:
[m] |(f+g)(x) - (f+g)(x_0)| = |f(x) + g(x) - f(x_0) - g(x_0) | = ... < \varepsilon + \varepsilon [/m]
probiere mal den beweis selber mit den hinweisen von oben zu ende zu führen und melde dich dann nochmal mit dem resultat oder mit fragen.
andreas
|
|
|
|