www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Summe mit einem Fehler
Summe mit einem Fehler < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe mit einem Fehler: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 17:06 Mo 14.11.2005
Autor: Peshkatari

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,
es geht um die Reihe

[mm] \summe_{n=1}^ \infty \bruch{1} {n^2 + 1} [/mm]

Ich soll die obige Summe mit einem Fehler berechnen,  der eine Einheit der siebenten signifikanten nicht ubersteigt. Bei der Entscheidung wieviele Summanden man zu berücksichtigen hat, können die Rechenfehler vernachlässigt werden.

Ich habe folgendes angefangen, aber andere Idee habe ich nicht

[mm] \summe_{n=1}^ \infty \bruch{1} {n^2} = \bruch {\pi^2} {6} [/mm] [mm] \summe_{n=1}^ \infty \bruch{1} {n^4} = \bruch {\pi^4} {90} [/mm]

        
Bezug
Summe mit einem Fehler: Tipp zum Fehlerabschätzen
Status: (Antwort) fertig Status 
Datum: 13:12 Di 15.11.2005
Autor: mathemaduenn

Hallo Peshkatari,
Für eine monoton fallende Funktion gilt ja:
[mm]f(n)\le \integral_{n-1}^{n} {f(x) dx}[/mm]
[mm] \Rightarrow [/mm]
[mm] \summe_{i=n}^{\infty} f(i)\le \integral_{n-1}^{\infty} {f(x) dx}[/mm]
Damit kannst Du den Restfehler der Berechnung abschätzen.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]