Summe konv. gg. Integral? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:08 Di 08.06.2010 | Autor: | Teufel |
Aufgabe | Sei $f: [a,b] [mm] \to \IR^2$ [/mm] eine stetig differenzierbare Kurve, [mm] Z=[t_0,t_1,...,t_n] [/mm] eine Zerlegung von $[a,b]$ [mm] (a=t_0
Gegen welchen Ausdruck konvergiert [mm] \summe_{i=1}^{n}A(f(x_{i-1}),f(x_i)) [/mm] wenn Z feiner wird? |
Hi!
Ich wollte so anfangen:
Die Punkte von f seien in Polarkooradinaten gegeben [mm] (f(t)=\vektor{r(t)*cos(t) \\ r(t)*sin(t)}). [/mm] Dann wäre [mm] A(f(t_{i-1}),f(t_i))=\bruch{r(t_{i-1})*r(t_i)}{2}*sin(t_{i-1}-t_i), [/mm] also muss ich diese Summe berechnen:
[mm] \summe_{i=1}^{n}\bruch{r(t_{i-1})*r(t_i)}{2}*sin(t_{i-1}-t_i). [/mm] Nun soll man die Zerlegung ja feiner machen. Dann hab ich mir überlegt, dass dann, je näher die einzelnen Winkel immer zusammenrücken, [mm] sin(t_{i-1}-t_i) [/mm] immer mehr gegen [mm] t_{i-1}-t_i [/mm] geht, wegen $sin(x) [mm] \approx [/mm] x$ für kleine x. Dann sieht die Summe schon fast wie die Definition vom Riemannintegral aus. Allerdings machen mir die 2 Funktionsausdrücke [mm] r(t_{i-1}) [/mm] und [mm] r(t_i) [/mm] zu schaffen. ich weiß nicht, wie ich diese vernünftig in das Integral einbauen kann, falls denn wirklich auf ein Integral hinausläuft.
Kann mir da jemand bitte helfen? Oder soll ich ganz anders an die Aufgabe rangehen?
Teufel
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:06 Mi 09.06.2010 | Autor: | rainerS |
Hallo Teufel!
> Sei [mm]f: [a,b] \to \IR^2[/mm] eine stetig differenzierbare Kurve,
> [mm]Z=[t_0,t_1,...,t_n][/mm] eine Zerlegung von [mm][a,b][/mm]
> [mm](a=t_0
> [mm]A(x,y)=\bruch{1}{2}(y_2x_1-y_1x_2)[/mm] für Punkte x,y [mm]\in \IR^2.[/mm]
>
> Gegen welchen Ausdruck konvergiert
> [mm]\summe_{i=1}^{n}A(f(x_{i-1}),f(x_i))[/mm] wenn Z feiner wird?
Nur als Idee: $A(x,y)$ ist doch die Fläche des Dreiecks mit den Eckpunkten $0,x,y$, oder?
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 10:26 Mi 09.06.2010 | Autor: | Teufel |
Hi!
Danke erstmal!
Ja, sogar eine gewichtete Fläche, da diese auch manchmal negativ sein kann.
Kriege ich da also dann den (gewichteten) Flächeninhalt einer Fläche raus, die durch 0, f(a), f(b) begrenzt wird, wobei 0 und f(a) sowieso 0 und f(b) gradlinig verbunden sind und f(a) und f(b) eben entlang der Kurve?
Also ich meine ca. so etwas hier:
[Dateianhang nicht öffentlich]
Teufel
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:13 Mi 09.06.2010 | Autor: | rainerS |
Hallo Teufel!
> Hi!
>
> Danke erstmal!
>
> Ja, sogar eine gewichtete Fläche, da diese auch manchmal
> negativ sein kann.
> Kriege ich da also dann den (gewichteten) Flächeninhalt
> einer Fläche raus, die durch 0, f(a), f(b) begrenzt wird,
> wobei 0 und f(a) sowieso 0 und f(b) gradlinig verbunden
> sind und f(a) und f(b) eben entlang der Kurve?
>
> Also ich meine ca. so etwas hier:
> [Dateianhang nicht öffentlich]
Ja, so verstehe ich das; genauer gesagt: die Fläche, die der "Fahrstrahl", also die gerichtete Verbindung vom Ursprung zu f(t) überstreicht; wobei die Bewegung des Fahrstrahls im Uhrzeigersinn positiv gerechnet wird, und im Gegenuhrzeigersinn negativ.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 21:27 Mi 09.06.2010 | Autor: | Teufel |
Ok, danke dir!
Teufel
|
|
|
|