www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Summe konv. Folgen
Summe konv. Folgen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe konv. Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:03 Sa 02.05.2009
Autor: Denny22

Hallo an alle,

Seien [mm] $(a_n)_{n\in\IN}$, $(b_n)_{n\in\IN}$ [/mm] und [mm] $(c_n)_{n\in\IN}$ [/mm] drei reelle Zahlenfolgen.

1. Bekanntlich gilt die Implikation:
     [mm] $a_n\rightarrow a\in\IR$, $b_n\rightarrow b\in\IR$ $\Longrightarrow$ $a_n+b_n\rightarrow [/mm] a+b$

2. Gilt auch die folgende Implikation? Falls nicht, wäre es schön, wenn mir jemand ein Gegenbeispiel geben könnte:
     [mm] $c_n\rightarrow c\in\IR$ [/mm] und [mm] $c_n=a_n+b_n$ $\Longrightarrow$ $(a_n)_{n\in\IN}$ [/mm] und [mm] $(b_n)_{n\in\IN}$ [/mm] beide konvergent

Danke und Gruß

        
Bezug
Summe konv. Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:07 Sa 02.05.2009
Autor: angela.h.b.


> Hallo an alle,
>  
> Seien [mm](a_n)_{n\in\IN}[/mm], [mm](b_n)_{n\in\IN}[/mm] und [mm](c_n)_{n\in\IN}[/mm]
> drei reelle Zahlenfolgen.
>  
> 1. Bekanntlich gilt die Implikation:
> [mm]a_n\rightarrow a\in\IR[/mm], [mm]b_n\rightarrow b\in\IR[/mm]
> [mm]\Longrightarrow[/mm] [mm]a_n+b_n\rightarrow a+b[/mm]
>  
> 2. Gilt auch die folgende Implikation? Falls nicht, wäre es
> schön, wenn mir jemand ein Gegenbeispiel geben könnte:
> [mm]c_n\rightarrow c\in\IR[/mm] und [mm]c_n=a_n+b_n[/mm] [mm]\Longrightarrow[/mm]
> [mm](a_n)_{n\in\IN}[/mm] und [mm](b_n)_{n\in\IN}[/mm] beide konvergent

Hallo,

na, da haben sich Deine Schützlinge wohl wieder etwas einfallen lassen...

[mm] a_n:=(-1)^n [/mm]

[mm] b_n:=(-1)^{n+1}. [/mm]

Gruß v. Angela

Bezug
                
Bezug
Summe konv. Folgen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:13 Sa 02.05.2009
Autor: Denny22

Hallo,
  

> na, da haben sich Deine Schützlinge wohl wieder etwas
> einfallen lassen...

das stimmt, sieht danach aus. Ich habe es mir auch nicht vorstellen können und war daher auf der Suche nach einem Gegenbeispiel. Leider habe ich keines gefunden. Aber Dein Gegenbeispiel ist absolut einleuchtend. Danke für den Tipp.

> [mm]a_n:=(-1)^n[/mm]
>  
> [mm]b_n:=(-1)^{n+1}.[/mm]
>  
> Gruß v. Angela

Gruß Denny

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]