www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Sumem der Reihe
Sumem der Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sumem der Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:14 Fr 16.06.2006
Autor: Maths

Aufgabe
Bestimme die Summe der Reihe:

[mm] \summe_{n=0}^{ \infty} \bruch{2+ (-1)^{n}}{3^{n}} [/mm]

bin mit dem quotientenkriterium rangegangen:


[mm] \bruch{2+(-1)^{n+1}*3^{n}}{3^{n+1}*(2+(-1)^{n}} [/mm]

durch kuerzen komme ich dann auf

[mm] \bruch{2+(-1)^{n+1}}{6+3*(-1)^{n}} [/mm]

nun habe ich nochmal

[mm] (-1)^{n} [/mm] ausgeklammert

sodas ueber dem bruchstrich (-1) + [mm] \bruch{2}{(-1)^{n}} [/mm]
unter unter dem bruchstrich 3 + [mm] \bruch{6}{(-1)^{n}} [/mm]


sei nun n gerade, so konvergiert die reihe gegen [mm] \bruch{1}{9} [/mm]
is n ungerade, so ist die reihe divergent

die summe der riehe ist

[mm] \bruch{1}{1-q} [/mm] =  [mm] \bruch{1}{1-\bruch{1}{9}} [/mm] = [mm] \bruch{9}{8} [/mm]


stimmt das?

        
Bezug
Sumem der Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:36 Fr 16.06.2006
Autor: mathemaduenn

Hallo Maths,
Zunächstmal das Quotientenkriterium gibt nur Auskunft darüber ob die Reihe überhaupt konvergiert oder nicht. Man kann damit keinerlei Grenzwerte ausrechnen.
Es gibt verschiedene Heragehensweise um Grenzwerte zu bestimmen. Hier wäre eine Möglichkeit sich mal die ersten Summanden hinzuschreiben.
Ich komme auf
[mm]\summe_{n=0}^{ \infty} \bruch{2+ (-1)^{n}}{3^{n}}=3+\bruch{1}{3}+\bruch{1}{3}+\bruch{1}{27}+\bruch{1}{27}+.....[/mm]
Eventuell erkennst Du ja da schon eine gewisse Systematik.
Auf jeden fall sieht man schonmal das es nicht [mm] \bruch{9}{8} [/mm] sein kann.
viele grüße
mathemaduenn

Bezug
        
Bezug
Sumem der Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:54 Sa 17.06.2006
Autor: Loddar

Hallo Maths!


Alternativ kannst Du diese Reihe auch auseinanderziehen und anschließend die beiden entstandenen geometrischen Reihen einzeln bestimmen:

[mm]\summe_{n=0}^{ \infty} \bruch{2+ (-1)^{n}}{3^{n}} \ = \ \summe_{n=0}^{ \infty} \bruch{2}{3^{n}}+\summe_{n=0}^{ \infty} \bruch{(-1)^{n}}{3^{n}} \ = \ 2*\summe_{n=0}^{ \infty} \bruch{1}{3^{n}}+\summe_{n=0}^{ \infty} \left(\bruch{-1}{3}\right)^n \ = \ 2*\summe_{n=0}^{ \infty} \left(\bruch{1}{3}\right)^n +\summe_{n=0}^{ \infty} \left(-\bruch{1}{3}\right)^n [/mm]


Gruß
Loddar


Bezug
                
Bezug
Sumem der Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:05 Mo 19.06.2006
Autor: Maths

und wie mache ich das bei:


[mm] \summe_{n=0}^{ \infty} \left(-\bruch{1}{3}\right)^n [/mm]

Bezug
                        
Bezug
Sumem der Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:21 Mo 19.06.2006
Autor: Maths

ist die summe der gesamten reihe 3,75?!?

Bezug
                                
Bezug
Sumem der Reihe: JA.
Status: (Antwort) fertig Status 
Datum: 11:46 Mo 19.06.2006
Autor: mathemaduenn

Hallo Maths,
Ja.
viele Grüße
mathemaduenn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]