www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Suche Sätze zu Eigenwerten
Suche Sätze zu Eigenwerten < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Suche Sätze zu Eigenwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:08 Do 07.08.2008
Autor: Denny22

Hallo an alle,

ich suche zwei Sätze (und insbesondere deren Voraussetzungen) zur Eigenwerttheorie. Die Aussagen sollen die folgenden sein:

Satz 1:
Sei [mm] $B\in\IR^{n\times n}$ [/mm] eine Matrix mit den Eigenwerten [mm] $\lambda_1,\ldots,\lambda_n$. [/mm] Dann besitzt die Inversmatrix [mm] $B^{-1}$ [/mm] die Eigenwerte [mm] $\frac{1}{\lambda_1},\ldots,\frac{1}{\lambda_n}$. [/mm]

Satz 2:
Seien [mm] $A,B\in\IR^{n\times n}$ [/mm] zwei Matrizen und Eigenwerten [mm] $\lambda_1,\ldots,\lambda_n$ [/mm] (von $A$) bzw. [mm] $\mu_1,\ldots,\mu_n$ [/mm] (von $B$). Dann besitzt das Matrixprodukt $AB$ die Eigenwerte [mm] $\lambda_1\mu_1,\ldots,\lambda_n\mu_n$. [/mm]

Wäre schön, wenn mir jemand einen Link mit den Sätzen schicken könnte oder mir vielleicht die Voraussetzungen der Aussage nennen könnte.

Danke und Gruß

        
Bezug
Suche Sätze zu Eigenwerten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:12 Do 07.08.2008
Autor: Denny22

Ich bin's nochmal: Satz 1 hat sich erledigt. Dort benötigt man nur, dass die Matrix invertierbar ist.

Bezug
        
Bezug
Suche Sätze zu Eigenwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Do 07.08.2008
Autor: fred97


> Hallo an alle,
>  
> ich suche zwei Sätze (und insbesondere deren
> Voraussetzungen) zur Eigenwerttheorie. Die Aussagen sollen
> die folgenden sein:
>  
> Satz 1:
>  Sei [mm]B\in\IR^{n\times n}[/mm] eine Matrix mit den Eigenwerten
> [mm]\lambda_1,\ldots,\lambda_n[/mm]. Dann besitzt die Inversmatrix
> [mm]B^{-1}[/mm] die Eigenwerte
> [mm]\frac{1}{\lambda_1},\ldots,\frac{1}{\lambda_n}[/mm].
>  
> Satz 2:
>  Seien [mm]A,B\in\IR^{n\times n}[/mm] zwei Matrizen und Eigenwerten
> [mm]\lambda_1,\ldots,\lambda_n[/mm] (von [mm]A[/mm]) bzw. [mm]\mu_1,\ldots,\mu_n[/mm]
> (von [mm]B[/mm]). Dann besitzt das Matrixprodukt [mm]AB[/mm] die Eigenwerte
> [mm]\lambda_1\mu_1,\ldots,\lambda_n\mu_n[/mm].


Satz 2 ist ohne weitere Vor. falsch !

Bsp.:  A = [mm] \pmat{ 0 & 1 \\ 0 & 0}, [/mm]  B = [mm] \pmat{ 1 & 0 \\ 1 & 1 } [/mm]

Dann ist AB = [mm] \pmat{ 1 & 1 \\ 0 & 0 }. [/mm]

AB hat also die Eigenwerte 0 und 1.

Mit Deinen Bez. ist  [mm] \lambda_1 [/mm] =  [mm] \lambda_2 [/mm] = 0 und  [mm] \mu_1 [/mm] =  [mm] \mu_2 [/mm] = 1


>  
> Wäre schön, wenn mir jemand einen Link mit den Sätzen
> schicken könnte oder mir vielleicht die Voraussetzungen der
> Aussage nennen könnte.
>  
> Danke und Gruß



Wo hast Du Satz 2 her ??


FRED

Bezug
                
Bezug
Suche Sätze zu Eigenwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Do 07.08.2008
Autor: Denny22

Hallo nochmal,

> Satz 2 ist ohne weitere Vor. falsch !

Dass der Satz ohne weitere Voraussetzungen falsch ist, habe ich schon vermutet. Deswegen wollte ich die Voraussetzungen wissen, unter denen dieser Satz gilt.

> Bsp.:  A = [mm]\pmat{ 0 & 1 \\ 0 & 0},[/mm]  B = [mm]\pmat{ 1 & 0 \\ 1 & 1 }[/mm]
>  
> Dann ist AB = [mm]\pmat{ 1 & 1 \\ 0 & 0 }.[/mm]
>  
> AB hat also die Eigenwerte 0 und 1.
>  
> Mit Deinen Bez. ist  [mm]\lambda_1[/mm] =  [mm]\lambda_2[/mm] = 0 und  [mm]\mu_1[/mm]
> =  [mm]\mu_2[/mm] = 1

Okay, gutes Gegenbeispiel. In meinem Fall sind die Matrizen $A$ und $B$ aber beide reell, symmetrisch, positiv definit und invertierbar. Außerdem besitzen sie keine doppelten Eigenwerte. Vielleicht spielt eines dieser Argumente dabei im Satz 2 eine Rolle, weil - wie ich sehe - hat Deine Matrix $A$ beispielsweise den Rang 1 und ist daher nicht invertierbar. Weiter sind die Matrizen weder symmetrisch noch positiv definit. An irgendeiner dieser Eigenschaften muss es liegen.

>
> Wo hast Du Satz 2 her ??
>  

Mein Professor hat diese Eigenschaft ausgenutzt, aber ich erinnere mich nicht mehr, unter welchen Bedingungen dies gilt und den Satz finde ich nirgendwo.

Hast Du oder jemand anderes eine Idee, unter welche (zusätzlichen) Eigenschaften der Satz 2 gilt?

Gruß

Bezug
                        
Bezug
Suche Sätze zu Eigenwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:22 Do 07.08.2008
Autor: pelzig

Also Für Diagonalmatrizen ist diser Satz trivialerweise erfüllt, denn da sind ja die Diagonaleinträge genau die Eigenwerte und wie man Diagonalmatrizen miteinander multipliziert sollte klar sein... Damit gilt Satz 2 sogar für alle Matrizen A,B, die simultan diagonalisierbar sind, da das Spektrum unter Basistransformationen invariant ist. Dies ist (!) genau dann der Fall, falls A und B diagonalisierbar sind und kommutieren. Aber ich vermute es gilt noch unter wesentlich schwächeren Voraussetzungen...

Bezug
                                
Bezug
Suche Sätze zu Eigenwerten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 Do 07.08.2008
Autor: felixf

Hallo

> Also Für Diagonalmatrizen ist diser Satz trivialerweise
> erfüllt, denn da sind ja die Diagonaleinträge genau die
> Eigenwerte und wie man Diagonalmatrizen miteinander
> multipliziert sollte klar sein...

Ja, die Diagonalelemente multiplizieren sich, allerdings muss man dann noch sagen, dass [mm] $\lambda_1, \dots, \lambda_n$ [/mm] die Diagonalelemente in genau dieser Reihenfolge sind (genauso fuer die [mm] $\mu_i$), [/mm] ansonsten gilt das naemlich nicht.

Den Satz sollte man besser so formulieren (mit passenden Voraussetzungen): es gibt eine Permutation [mm] $\pi [/mm] : [mm] \{ 1, \dots, n \} \to \{ 1, \dots, n \}$ [/mm] so, dass $A B$ die Eigenwerte [mm] $\lambda_1 \mu_{\pi(1)}, \dots, \lambda_n \mu_{\pi(n)}$ [/mm] hat.

> Damit gilt Satz 2 sogar
> für alle Matrizen A,B, die simultan diagonalisierbar sind,
> da das Spektrum unter Basistransformationen invariant ist.
> Dies ist (!) genau dann der Fall, falls A und B
> diagonalisierbar sind und kommutieren. Aber ich vermute es
> gilt noch unter wesentlich schwächeren Voraussetzungen...

Es reicht ja voellig aus, dass die beiden Matrizen simultan triagonalisierbar sind. Apropos, weiss jemand wie man solche Matrizenpaare klassifizieren kann?

LG Felix


Bezug
                        
Bezug
Suche Sätze zu Eigenwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 Fr 08.08.2008
Autor: fred97


> Hallo nochmal,
>  
> > Satz 2 ist ohne weitere Vor. falsch !
>  
> Dass der Satz ohne weitere Voraussetzungen falsch ist, habe
> ich schon vermutet. Deswegen wollte ich die Voraussetzungen
> wissen, unter denen dieser Satz gilt.
>  
> > Bsp.:  A = [mm]\pmat{ 0 & 1 \\ 0 & 0},[/mm]  B = [mm]\pmat{ 1 & 0 \\ 1 & 1 }[/mm]
>  
> >  

> > Dann ist AB = [mm]\pmat{ 1 & 1 \\ 0 & 0 }.[/mm]
>  >  
> > AB hat also die Eigenwerte 0 und 1.
>  >  
> > Mit Deinen Bez. ist  [mm]\lambda_1[/mm] =  [mm]\lambda_2[/mm] = 0 und  [mm]\mu_1[/mm]
> > =  [mm]\mu_2[/mm] = 1
>  
> Okay, gutes Gegenbeispiel. In meinem Fall sind die Matrizen
> [mm]A[/mm] und [mm]B[/mm] aber beide reell, symmetrisch, positiv definit und
> invertierbar. Außerdem besitzen sie keine doppelten
> Eigenwerte.

WARUM SAGST DU DAS NICHT GLEICH ?????
FRED

>Vielleicht spielt eines dieser Argumente dabei

> im Satz 2 eine Rolle, weil - wie ich sehe - hat Deine
> Matrix [mm]A[/mm] beispielsweise den Rang 1 und ist daher nicht
> invertierbar. Weiter sind die Matrizen weder symmetrisch
> noch positiv definit. An irgendeiner dieser Eigenschaften
> muss es liegen.
>  
> >
> > Wo hast Du Satz 2 her ??
>  >  
>
> Mein Professor hat diese Eigenschaft ausgenutzt, aber ich
> erinnere mich nicht mehr, unter welchen Bedingungen dies
> gilt und den Satz finde ich nirgendwo.
>  
> Hast Du oder jemand anderes eine Idee, unter welche
> (zusätzlichen) Eigenschaften der Satz 2 gilt?
>  
> Gruß


Bezug
                        
Bezug
Suche Sätze zu Eigenwerten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:10 Fr 08.08.2008
Autor: felixf

Hallo

> > Satz 2 ist ohne weitere Vor. falsch !
>  
> Dass der Satz ohne weitere Voraussetzungen falsch ist, habe
> ich schon vermutet. Deswegen wollte ich die Voraussetzungen
> wissen, unter denen dieser Satz gilt.
>  
> > Bsp.:  A = [mm]\pmat{ 0 & 1 \\ 0 & 0},[/mm]  B = [mm]\pmat{ 1 & 0 \\ 1 & 1 }[/mm]
>  
> >  

> > Dann ist AB = [mm]\pmat{ 1 & 1 \\ 0 & 0 }.[/mm]
>  >  
> > AB hat also die Eigenwerte 0 und 1.
>  >  
> > Mit Deinen Bez. ist  [mm]\lambda_1[/mm] =  [mm]\lambda_2[/mm] = 0 und  [mm]\mu_1[/mm]
> > =  [mm]\mu_2[/mm] = 1
>  
> Okay, gutes Gegenbeispiel. In meinem Fall sind die Matrizen
> [mm]A[/mm] und [mm]B[/mm] aber beide reell, symmetrisch, positiv definit und
> invertierbar. Außerdem besitzen sie keine doppelten
> Eigenwerte. Vielleicht spielt eines dieser Argumente dabei
> im Satz 2 eine Rolle, weil - wie ich sehe - hat Deine
> Matrix [mm]A[/mm] beispielsweise den Rang 1 und ist daher nicht
> invertierbar. Weiter sind die Matrizen weder symmetrisch
> noch positiv definit. An irgendeiner dieser Eigenschaften
> muss es liegen.

Nein, die beiden Eigenschaften reichen nicht. Du brauchst noch dass die Matrizen kommutieren (und immernoch dass die Eigenwerte in der richtigen Reihenfolge angegeben sind, oder du brauchst eine Permutation!).

Gegenbeispiel:

$A = [mm] \pmat{ 1 & 0 \\ 0 & 2 }$, [/mm] $B = [mm] \pmat{ 3/2 & -1/2 \\ -1/2 & 3/2 }$; [/mm] es ist $B = T A [mm] T^t$ [/mm] mit der orthogonalen Matrix $T = [mm] \frac{1}{\sqrt{2}} \pmat{ 1 & -1 \\ 1 & 1 }$. [/mm]

Die Matrix $A B$ hat nun laut MAPLE die Eigenwerte [mm] $\frac{9 + \sqrt{17}}{4}$ [/mm] und [mm] \frac{9 - \sqrt{17}}{4}$, [/mm] und das hat keine Aehnlichkeit mit den Produkten $1 [mm] \cdot [/mm] 1$, $1 [mm] \cdot [/mm] 2$ und $2 [mm] \cdot [/mm] 2$.

LG Felix


Bezug
                                
Bezug
Suche Sätze zu Eigenwerten: Für Interessierte
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:32 Fr 08.08.2008
Autor: fred97

Ist A eine komplexe Bannachalgebra mit Einselement und bez. man mit [mm] \sigma(x) [/mm] das Spektrum von x [mm] \in [/mm] A, so gilt für a, b [mm] \in [/mm] A mit ab = ba:

[mm] \sigma(ab) \subseteq [/mm] {ts: t [mm] \in \sigma(a), [/mm] s [mm] \in \sigma(b) [/mm] }

Dieser Sachverhalt ist nicht einfach zu beweisen, man benötigt Gelfand -Theorie.


Ein Spezialfall wäre:
A  = Menge der komplexen nxn -Matrizen (in diesem Fall ist das Spektrum gerade die Menge der Eigenwerte).

FRED


Bezug
                                
Bezug
Suche Sätze zu Eigenwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Fr 08.08.2008
Autor: Denny22

Ich bin mir nicht sicher, ob ich es schon geschrieben habe und ob es wichtig ist, aber sie Matrix $A$ ist bei mir eine diagonaldominante Tridiagonalmatrix und $B$ ist die Inverse irgendeiner diagonaldominanten Tridiagonalmatrix. Weiter müsste damit (glaube ich zumindest) $AB=BA$ gelten. Hilf mir das für die Voraussetzungen für Satz 2?

Bezug
                                        
Bezug
Suche Sätze zu Eigenwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:04 Fr 08.08.2008
Autor: fred97


> Ich bin mir nicht sicher, ob ich es schon geschrieben habe
> und ob es wichtig ist, aber sie Matrix [mm]A[/mm] ist bei mir eine
> diagonaldominante Tridiagonalmatrix und [mm]B[/mm] ist die Inverse
> irgendeiner diagonaldominanten Tridiagonalmatrix. Weiter
> müsste damit (glaube ich zumindest) [mm]AB=BA[/mm] gelten.

Das fogt nicht azs Deinen Vor.

>Hilf mir

> das für die Voraussetzungen für Satz 2?



Frage: Warum rückst Du erst nach und nach mit den speziellen Eigenschaften von A und B heraus ??????????

FRED

Bezug
                                                
Bezug
Suche Sätze zu Eigenwerten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:14 Fr 08.08.2008
Autor: Denny22

Diese Eigenschaften sind mir gerade noch eingefallen. Sorry, dass sie mir nicht früher auf- bzw. eingefallen sind.

Bezug
                                        
Bezug
Suche Sätze zu Eigenwerten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Sa 09.08.2008
Autor: felixf

Hallo

> Ich bin mir nicht sicher, ob ich es schon geschrieben habe
> und ob es wichtig ist, aber sie Matrix [mm]A[/mm] ist bei mir eine
> diagonaldominante Tridiagonalmatrix und [mm]B[/mm] ist die Inverse
> irgendeiner diagonaldominanten Tridiagonalmatrix. Weiter
> müsste damit (glaube ich zumindest) [mm]AB=BA[/mm] gelten. Hilf mir
> das für die Voraussetzungen für Satz 2?

Da die Matrizen symmetrisch sind sind sie orthogonal diagonalisierbar, und da $A B = B A$ gilt sind sie simultan diagonalisierbar. Damit bekommt man die Aussage natuerlich sehr einfach hin.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]