www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Substitutionsverfahren
Substitutionsverfahren < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitutionsverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Di 27.05.2008
Autor: Owen

Aufgabe
Berechne folgende Integrale durch geeignete Substitution:
[mm] 1.\integral_{}^{}{\bruch{e^{x}+1}{e^{x}-1} dx} [/mm]
[mm] 2.\integral_{}^{}{x*\wurzel{1-x^{2}}dx} [/mm]

Hallo,
ich komme hierbei nicht weiter. Habe bei 1. folgendermaßen substituiert:
[mm] z=e^{x}+1 [/mm]
x=ln(z-1)
[mm] \bruch{dx}{dz}=\bruch{1}{z-1} [/mm]
[mm] dx=\bruch{1}{z-1}dz [/mm]
[mm] \integral_{}^{}{\bruch{z}{e^{ln(z-1)}-1}*\bruch{dz}{z-1}} [/mm]
An der Form merke ich, dass es nichts bringt hier weiterzurechnen.

Bei 2. bin ich mir auch nicht sicher, wie ich vorgehen soll.

        
Bezug
Substitutionsverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:03 Mi 28.05.2008
Autor: schachuzipus

Hallo Eugen,

> Berechne folgende Integrale durch geeignete Substitution:
>  [mm]1.\integral_{}^{}{\bruch{e^{x}+1}{e^{x}-1} dx}[/mm]
>  
> [mm]2.\integral_{}^{}{x*\wurzel{1-x^{2}}dx}[/mm]
>  Hallo,
>  ich komme hierbei nicht weiter. Habe bei 1. folgendermaßen
> substituiert:
>  [mm]z=e^{x}+1[/mm]
>  x=ln(z-1)
>  [mm]\bruch{dx}{dz}=\bruch{1}{z-1}[/mm]
>  [mm]dx=\bruch{1}{z-1}dz[/mm]
>  [mm]\integral_{}^{}{\bruch{z}{e^{ln(z-1)}-1}*\bruch{dz}{z-1}}[/mm]
>  An der Form merke ich, dass es nichts bringt hier
> weiterzurechnen.
>  
> Bei 2. bin ich mir auch nicht sicher, wie ich vorgehen
> soll.


Bei dem ersten Integral forme zunächst mit dem Standardtrick um:

[mm] $\frac{e^x+1}{e^x-1}=\frac{e^x\red{-1+1}+1}{e^x-1}=1+\frac{2}{e^x-1}$ [/mm]

Dann kannst du dein Integral [mm] $\int{\frac{e^x+1}{e^x-1} \ dx}$ [/mm] schreiben als [mm] $\int{1 \ dx}+2\cdot{}\int{\frac{1}{e^x-1} \ dx}$ [/mm]

Nun substituiere [mm] $u:=e^x$ [/mm] ...

Dann ist [mm] $\frac{du}{dx}=e^x\Rightarrow dx=\frac{du}{e^x}=\frac{du}{u}$ [/mm]

Den Rest du ...


Beim zweiten Integral substituiere direkt [mm] $u:=1-x^2$ [/mm]


LG

schachuzipus

Bezug
                
Bezug
Substitutionsverfahren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:36 Mi 28.05.2008
Autor: Owen

Aufgabe
s.oben

Hallo, danke erstmal.
Bei der 1. bin ich nun so vorgegangen:
[mm] \integral_{}^{}{1 dx}+\integral_{}^{}{\bruch{2}{e^{x}-1} dx} [/mm]
[mm] u:=e^{x} [/mm]
x=ln(u)
[mm] \bruch{dx}{du}=\bruch{1}{u} [/mm]
[mm] dx=\bruch{du}{u} [/mm]

[mm] x+2*\integral_{}^{}{\bruch{du}{(u-1)*u}}=x+2*ln|\bruch{u-1}{u}| [/mm]
[mm] =x+2*ln|1-\bruch{1}{u}|=x+2*ln|1-\bruch{1}{e^{x}}| [/mm]

Ist das soweit korrekt?


Bezug
                        
Bezug
Substitutionsverfahren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:50 Mi 28.05.2008
Autor: schachuzipus

Hallo Eugen,

> s.oben
>  Hallo, danke erstmal.
>  Bei der 1. bin ich nun so vorgegangen:
>  [mm]\integral_{}^{}{1 dx}+\integral_{}^{}{\bruch{2}{e^{x}-1} dx}[/mm]
>  
> [mm]u:=e^{x}[/mm]
>  x=ln(u)
>  [mm]\bruch{dx}{du}=\bruch{1}{u}[/mm]
>  [mm]dx=\bruch{du}{u}[/mm]
>  
> [mm]x+2*\integral_{}^{}{\bruch{du}{(u-1)*u}}=x+2*ln|\bruch{u-1}{u}|[/mm]
>  [mm]=x+2*ln|1-\bruch{1}{u}|=x+2*ln|1-\bruch{1}{e^{x}}|[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

[daumenhoch]

>  
> Ist das soweit korrekt?


Ja, sehr schön so! Du kannst es aber noch "nett" zusammenfassen

Es ist ja $1-\frac{1}{e^x}=\frac{e^x-1}{e^x}$, also $2\cdot{}\ln\left(\frac{e^x-1}{e^x\right)=2\cdot{}\left[\ln(e^x-1)-\ln(e^x)\right]=2\ln(e^x-1)-2x$

Also insgesamt....



LG

schachuzipus  


Bezug
                                
Bezug
Substitutionsverfahren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:58 Mi 28.05.2008
Autor: Owen

Ja, alles klar, vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]