www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Substitution von Integrale
Substitution von Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution von Integrale: Hänge an einer Aufgabe fest
Status: (Frage) beantwortet Status 
Datum: 12:57 Do 12.03.2009
Autor: mazel

Aufgabe
Lösen Sie folgendes Integral unter Verwendung einer geeigneten Substitution. (Mathe für Chemiker)

Also ich habe das Integral:

[mm] \integral_{}^{} (5x+12)^{0,5}\, [/mm] dx

gegeben.

Die Substitutionsgleichungen habe ich wie folgt formuliert:

u = 5x+12, [mm] \bruch{du}{dx} [/mm] = 5 , dx = [mm] \bruch{du}{5} [/mm]

Nächster Schritt ist: Integralsubstitution

[mm] \integral_{}^{} (u)^{0,5}*\bruch{du}{5} [/mm] = [mm] \integral_{}^{} [/mm] 5(u) du

Weiterer Schritt: Integration und Rücksubstitution und da harperts dann!!!

[mm] \integral_{}^{} [/mm] 5(5x+12)^(0,5) +c wenn ich ehrlich bin weiss ich an diesem punkt nicht mehr weiter.... hab rumgerechnet und irgendwie wird das alles nichts... weiss jemand rat wie man das weiter lösen sollte oder wo ich evtl. einen fehler begangen habe? :D

Die Lösung sollte F(x) = [mm] \bruch{2}{15}*\wurzel{(5x+12)^3}+c [/mm] sein

-------------------------------------------
p.s.:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Substitution von Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:17 Do 12.03.2009
Autor: Al-Chwarizmi


> [mm]\integral_{}^{} (5x+12)^{0,5}\,[/mm] dx
>  
> u = 5x+12, [mm]\bruch{du}{dx}[/mm] = 5 , dx = [mm]\bruch{du}{5}[/mm]     [ok]
>  
> Nächster Schritt ist: Integralsubstitution
>  
> [mm]\integral_{}^{} (u)^{0,5}*\bruch{du}{5}[/mm] = [mm]\integral_{}^{}5(u) du[/mm]    [verwirrt]

Linke Seite OK, aber die rechte Seite ist mir rätselhaft !

>  
> Weiterer Schritt: Integration und Rücksubstitution und da
> harperts dann!!!
>  
> [mm]\integral_{}^{}[/mm] 5(5x+12)^(0,5) +c wenn ich ehrlich bin
> weiss ich an diesem punkt nicht mehr weiter....

Richtig ginge es so:

      [mm] $\integral_{}^{} (u)^{0.5}*\bruch{du}{5}\ [/mm] =\ [mm] \bruch{1}{5}*\integral u^{0.5}\,du\ [/mm] =\ [mm] \bruch{1}{5}*\bruch {u^{1.5}}{1.5}\,+\,C=\ \bruch{2}{15}*u^{1.5}\,+\,C$ [/mm]

... und jetzt rücksubstituieren !


LG   Al-Chw.



Bezug
                
Bezug
Substitution von Integrale: Danke, aber
Status: (Frage) beantwortet Status 
Datum: 15:01 Do 12.03.2009
Autor: mazel

Aufgabe
Erneute Frage

> Richtig ginge es so:
>  
> [mm]\integral_{}^{} (u)^{0.5}*\bruch{du}{5}\ =\ \bruch{1}{5}*\integral u^{0.5}\,du\ =\ \bruch{1}{5}*\bruch {u^{1.5}}{1.5}\,+\,C=\ \bruch{2}{15}*u^{1.5}\,+\,C[/mm]
>  
> ... und jetzt rücksubstituieren !

Ok... bis hierhin... hab des ein wenig falsch verstanden gehabt... kam irgendwie nicht darauf, einfach durch 5 zu teiln und des vors integral zu schreiben...

[mm] \bruch{2}{15}*(5x+12)^{1,5}+c [/mm] = [mm] \bruch{2}{15}*\wurzel{(5x+12)^3}+c [/mm]

Ist denn (x)^(1,5) = [mm] \wurzel{x^3} [/mm] oder wird des noch anders gemacht?

wenn ja hab ich das nicht gewusst und zu meinem ersten Fehlverständnis noch eine Wissenslücke :)

Bezug
                        
Bezug
Substitution von Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 15:04 Do 12.03.2009
Autor: fred97

Allgemein gilt für p,q [mm] \in \IN: [/mm]

      [mm] x^{p/q} [/mm] = [mm] \wurzel[q]{x^p} [/mm]


FRED

Bezug
                                
Bezug
Substitution von Integrale: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:17 Do 12.03.2009
Autor: mazel

Danke, dass wusste ich nicht. Nun ist es aber klar, danke für die schnelle Hilfe.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]