Substitution bei Integralen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:27 Mi 06.06.2007 | Autor: | Boken |
Hallo! Ich habe eine Frage zur Substitution bei Integralen: Wann kann man dieses Schema anwenden? Nur bei bestimmten Funktionen (undwenn ja bei welchen 'Typen')? Oder generell immer?
und was heißt: "Der Term im Integral ergibt sich als das Produkt der inneren und äußeren Ableitung eines anderen Terms. Dieser muss bis auf einen konstanten Faktor gelten"
Vielen Dank für die Hilfe!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Moin Boken!
> Hallo! Ich habe eine Frage zur Substitution bei Integralen: Wann kann man dieses
> Schema anwenden? Nur bei bestimmten Funktionen (undwenn ja bei welchen 'Typen')?
> Oder generell > immer?
Richtig, im Prinzip kannst Du immer substituieren. Allerdings müssen dabei die Regeln des jeweiligen mathematischen Raumes beachtet werden: Es funktioniert zum Beispiel nicht generell, bei Integration nach [mm]dx[/mm] im [mm]\IR[/mm] folgende Substitution vorzunehmen: [mm]\wurzel z = \cos x[/mm], da der cosinus ja auch negative Werte annimmt. Abgesehen davon, daß diese Substitution wenig hilfreich ist, wäre sie nur auf denjenigen Intervallen erlaubt, in welchen [mm]\cos x \ge 0[/mm] gilt.
> und was heißt: "Der Term im Integral
Dieser Term heißt Integrand.
> ergibt sich als das Produkt der inneren und äußeren Ableitung eines anderen Terms.
Die Stammfunktion der Funktion [mm]f(x)[/mm] ist bekanntlich [mm]F(x)[/mm]. Wenn beispielsweise gilt: [mm]F(x) = (3x-1)^2[/mm], könnte man mit [mm]z = 3x-1[/mm] auch [mm]F(z) = z^2[/mm] schreiben. [mm]F[/mm] ist also eine verschachtelte Funktion. Soll diese nun wieder nach [mm]x[/mm] abgeleitet werden, muß die Kettenregel angwendet werden, nach der die Ableitung einer verschachtelten Funktion das Produkt von innerer und äußerer Ableitung ist: [mm]f(x) = \bruch{d}{dx}F(z(x)) = \bruch{dF}{dz}\, \bruch{dz}{dx}[/mm]; oder umgansprachlich: [mm]f(x) = F' * z'[/mm].
In Worten heißt das: Du leitest zunächst die Funktion [mm]F(z)[/mm] nach [mm]z[/mm] ab (äußere Ableitung), dann leitest Du [mm]z(x)[/mm] nach [mm]x[/mm] ab (innere Ableitung) und multiplizierst beide Ableitungen.
Für das obige Beispiel erhält man [mm]\bruch{dF}{dx} = f(x) = 2(3x-1) * 3[/mm].
> Dieser muss bis auf einen konstanten Faktor gelten"
Ein konstanter Faktor [mm]c[/mm] kann natürlich aus dem Integral herausgezogen werden: [mm]\integral c * f(x) dx \; = \; c \integral F' * z'[/mm].
Gruß, Marx.
|
|
|
|