www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Substitution
Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Mo 16.06.2008
Autor: AbraxasRishi

Aufgabe
[mm]\integral{x*(3x^2-1)^2}dx[/mm]

Ermittle die Stammfunktion.

Hallo!

Ich habe vermutlich eine Lösungsweg gefunden aber dieser erscheint mir so kompliziert, dass ich fragen möchte ob es so üblich ist, oder ob es noch einen anderen gibt.

Mein Ansatz wäre:

[mm]\integral{(3x^{2,5}-1x^{0,5})^2}dx[/mm]

Ist sowas überhaupt erlaubt?

Subst. [mm] (3x^{2,5}-1x^{0,5})=z [/mm]

[mm]\integral{z^2}dz[/mm]

Stammfunktion: [mm]\bruch{z^3}{3}[/mm]

Resubst.

[mm] \bruch{1}{7,5x^{1,5}-0,5x^{-0,5}}+\bruch{(3x^{2,5}-1x^{0,5})^3}{3} [/mm]

Wie gesagt ich glaube mein Vorschlag kann nur falsch sein. Könnte mir bitte jemand einen Tipp geben?Würde mich freuen!  :-)

Gruß

Angelika





        
Bezug
Substitution: nicht richtig
Status: (Antwort) fertig Status 
Datum: 12:29 Mo 16.06.2008
Autor: Loddar

Hallo angelika!


Deine Umformung ist falsch. Das kannst Du durch Ausmultiplizieren schnell vergleichen.

Für die Stammfunktion (in der Ausgangsform) einfach den Inhalt der Klammer substituieren:

$$z \ := \ [mm] 3x^2-1$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:40 Mo 16.06.2008
Autor: AbraxasRishi

Hallo Loddar!

Danke für deinen Tipp!

Welche Umformung meinst du? Die 1. müsste doch laut meinem Taschenrechner richtig sein:  x=3

[mm] (3*3^{2,5}-3^{0,5})^2=3*(3*3^2-1)^2 [/mm] = 2028

Aber ich glaube das muss man wirklich anders substituieren und zwar das:

[mm]\bruch{(3x^2-1)^3}{18}[/mm] herauskommt, oder?

Vielen Dank!   :-)

Gruß

Angelika

Bezug
                        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Mo 16.06.2008
Autor: schachuzipus

Hallo Angelika,

> Hallo Loddar!
>  
> Danke für deinen Tipp!
>  
> Welche Umformung meinst du? Die 1. müsste doch laut meinem
> Taschenrechner

besser laut Potenzgesetz [mm] $a^m\cdot{}b^m=(a\cdot{}b)^m$ [/mm]

> richtig sein:  x=3
>  
> [mm](3*3^{2,5}-3^{0,5})^2=3*(3*3^2-1)^2[/mm] = 2028

Deine Umformung oben stimmt schon, aber diese Begründung dafür nicht ;-)

Wenn die Gleichheit auf beiden Seiten für eine Zahl gilt, gilt sie noch lange nicht für alle...

> Aber ich glaube das muss man wirklich anders substituieren
> und zwar das:
>  
> [mm]\bruch{(3x^2-1)^3}{18}[/mm] herauskommt, oder?

Ja, das sollte herauskommen. Loddar hat doch den Ansatz für die Substitution schon hingeschrieben.

Substituiere im Ausgangsintegral [mm] $z=3x^2-1$ [/mm]

Dann ist [mm] $z'=\frac{dz}{dx}=6x$, [/mm] also [mm] $dx=\frac{1}{6x} [/mm] \ dz$

Das nun mal alles im Ausgangsintegral ersetzen ...


LG

schachuzipus

>  
> Vielen Dank!   :-)
>  
> Gruß
>  
> Angelika


Bezug
                                
Bezug
Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:55 Mo 16.06.2008
Autor: AbraxasRishi

Danke schachuzipus!

Bezug
        
Bezug
Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Mo 16.06.2008
Autor: schachuzipus

Hallo Angelika,

ich denke schon, dass deine erste Umformung stimmt.

Du hast [mm] $x=\left(x^{\frac{1}{2}}\right)^2$ [/mm] geschrieben und es in die Klammer mit dem Quadrat reingezogen, das geht natürlich.

Allerdings bringt dich die anschließende Substitution nicht recht weiter, zumal da du vergessen hast, dass Differential $dx$ auch zu substituieren und in $dz$ auszudrücken.

Der kurze, schnelle und ökonomische Weg ist der nach Loddars Ansatz ;-)


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]