www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Substitution
Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Substitution: Aufgabe/Tipp
Status: (Frage) beantwortet Status 
Datum: 17:36 Fr 11.01.2008
Autor: mathematik_graz

Aufgabe
integriere:

[mm] \integral_{}^{}{2/(t^4 + 4*t^2+3) dt} [/mm]

ich habe durch zweimalige substitution das erhalten und schaffe es nicht das polynom jetzt zu integrieren.
die nulstellen sind ja i,-i,i*sqrt(3),-i*sqrt(3) und bei der partialbruchzerlegung komm ich auch nicht weiter!!
wie soll ich das polynom integrieren??

lg

        
Bezug
Substitution: Partialbruchzerlegung
Status: (Antwort) fertig Status 
Datum: 17:43 Fr 11.01.2008
Autor: Roadrunner

Hallo mathematik_graz!


Führe hier folgende MBPartialbruchzerlegung durch:

[mm] $$\bruch{2}{t^4 + 4*t^2+3} [/mm] \ = \ [mm] \bruch{2}{\left(t^2+1\right)*\left(t^2+3\right)} [/mm] \ = \ [mm] \bruch{A*t+B}{t^2+1}+\bruch{C*t+D}{t^2+3}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Fr 11.01.2008
Autor: mathematik_graz

jap danke hab es jetzt geschafft.

aber wie kommt man so schnell auf die substitution vor allem das oben mit den A*t etc.? worauf muss man da genau schauen?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]