www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Operations Research" - Subgradient bestimmen
Subgradient bestimmen < Operations Research < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Subgradient bestimmen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 01:34 Di 04.05.2010
Autor: Katrin89

Aufgabe
Bestimme die Subdifferentiale zu den folgenden beiden Funktionen:
f(x)=|x-2|+1
[mm] g(x)=|x-2|^2+1 [/mm]

für:
1) [mm] \partial [/mm] f(0)
2) [mm] \partial [/mm] g(0)
3) [mm] \partial [/mm] g(2)

Guten Abend,
ich habe da mal angefangen und komme nicht ganz weiter bzw. möchte auch gerne wissen, ob die Vorgehensweise richtig ist:
1) einsetzen und umformen liefert:
|x-2|-2 [mm] \ge d^T*x [/mm]
1. Fall:
x [mm] \le [/mm] 0:
-x [mm] \ge d^T*x, [/mm] dann erfüllt [mm] d^T=-1 [/mm] die Ungleichung
2. Fall:
x [mm] \ge d^T*x+4 [/mm]
Kann mir jemand sagen, wie ich mein [mm] d^T [/mm] hier wählen kann bzw., welche Überlegungen ich anstellen muss?

für 2) und 3) gilt, dass der Betrag [mm] \ge0 [/mm] ist wegen dem Quadrat. Demnach gibt es keine Fallunterscheidungen.  Ich erhalte aber wieder zwei zu 1) 2. Fall ähnliche Ungleichungen.

Viele Grüße

        
Bezug
Subgradient bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:02 Mi 05.05.2010
Autor: Katrin89

Hat jemand ne Idee? Komme nicht klar... :-)

Bezug
                
Bezug
Subgradient bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:38 Fr 07.05.2010
Autor: side

ich habe mir folgendes überlegt:
für [mm] \partial\;f(0) [/mm] erhalte ich (wie du) [mm] |x-2|-2\ge\;dx [/mm] (das T kann man weglassen da hier [mm] d\in\IR) [/mm]
dann gilt weiter: [mm] x\not=0, [/mm] da für [mm] x=x_0=0 [/mm] schon alles klar wäre (dann wären nämlich alle [mm] d\in\IR [/mm] Elemende des Subdiff.)
also kann ich schreiben:
[mm] \bruch{|x-2|-2}{x}\ge\;d [/mm]
nun 1. Fall [mm] x\le\;2,es [/mm] ergibt sich (Betragsstriche weglassen und "-" davor):
[mm] -1\ge\;d [/mm]

nun 2.Fall x>2, es ergibt sich:
[mm] \bruch{x-2-2}{x}\ge\;d, [/mm] also [mm] 1-\bruch{4}{x}\ge\;d [/mm]
Heisst das nun, dass das Subdifferential leer ist, da [mm] 1-\bruch{4}{x} [/mm] für x positiv gegen 0 unendlich klein wird, und somit kein d gefunden wird, dass für alle [mm] x\in\IR [/mm] kleiner ist?

Bezug
                        
Bezug
Subgradient bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 Mo 10.05.2010
Autor: Katrin89

Danke. Ich habe auch, dass das Subdifferential die leere Menge ist, denn, wenn du mal die Funktion f(x) zeichnest, dann siehst du, dass man keine Gerade an den Punkt xo liegen kann, die nur den Punkt xo berührt.
Viele Grüße

Bezug
        
Bezug
Subgradient bestimmen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:20 Mi 12.05.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Operations Research"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]