Streuung an einem Kern < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:51 So 01.12.2013 | Autor: | QexX |
Aufgabe | Im Folgenden soll in erster Born’sche Näherung die Streuamplitude [mm] f_k^{(1)}=const.\cdot\int U(x’)e^{-i(\vec{k}’-\vec{k})\vec{x}} [/mm] bei elastischer Streuung von Elektronen an einem Kern der Ladung Ze berechnet werden. (Z: Kernladungszahl). Dazu soll zur expliziten Berechnung der Fouriertransformierten des Kernpotentials U eine Fourier-Zerlegung der Poisson-Gleichung [mm] \Delta U=-4\pi\rho [/mm] durchgeführt werden. [mm] (\rho: [/mm] Ladungsdichte) |
Hi,
zunächst die Poisson-Gleichung für das vorliegende Problem:
[mm] \Delta U=-4\pi\underbrace{[Z\delta(\vec{x})-\rho(\vec{x})]}_{=\rho},
[/mm]
da sich die Protonenladungsdichte genähert punktförmig im Kern befindet und [mm] \rho(\vec{x})\equiv\rho_0=\frac{Ze}{V_{Kugel}}=const. [/mm] die Elektronenladungsdichte beschreibt.
Führt man hier eine Fourier-Zerlegung durch, erhält man zunächst für die linke Seite (ohne auf weitere Details einzugehen) in den k-Raum:
[mm] FT\{\Delta U(\vec{x}\}=-k^2 FT\{\Delta U\}, [/mm] wobei [mm] FT\{\Delta U\} [/mm] ja gerade proportional zum gesuchten Ausdruck für die Streuamplitude [mm] f_k^{(1)} [/mm] ist.
Für die rechte Seite erhält man (ohne Pachtung der Konstanten):
[mm] FT\{Z\delta(\vec{x})-\rho(\vec{x})\}=Z\int e^{-i\vec{k}\vec{x}}\delta(\vec{x})d^3x-\rho_0\int 1\cdot e^{-i\vec{k}\vec{x}}d^3x=Z-\rho_0\delta(\vec{k})
[/mm]
Falls das soweit stimmt, würde daraus direkt folgen:
[mm] f_k^{(1)}\propto FT\{U\}=-\frac{4\pi}{k^2}(Z-\rho_0\delta(\vec{k})).
[/mm]
Dieses Ergebnis erscheint wegen der noch auftretenden Delta-Distribution etwas merkwürdig, auch hinsichtlich dessen, dass [mm] \vert f_k^{(0)}\vert^2 [/mm] den differentiellen Streuquerschnitt liefern würde, wobei dann das Betragsquadrat jener zu bilden wäre.
Wo liegt der Fehler?
Danke schonmal.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:17 Di 03.12.2013 | Autor: | rainerS |
Hallo!
> Im Folgenden soll in erster Born’sche Näherung die
> Streuamplitude [mm]f_k^{(1)}=const.\cdot\int U(x’)e^{-i(\vec{k}’-\vec{k})\vec{x}}[/mm]
> bei elastischer Streuung von Elektronen an einem Kern der
> Ladung Ze berechnet werden. (Z: Kernladungszahl). Dazu soll
> zur expliziten Berechnung der Fouriertransformierten des
> Kernpotentials U eine Fourier-Zerlegung der
> Poisson-Gleichung [mm]\Delta U=-4\pi\rho[/mm] durchgeführt werden.
> [mm](\rho:[/mm] Ladungsdichte)
> Hi,
>
> zunächst die Poisson-Gleichung für das vorliegende
> Problem:
>
> [mm]\Delta U=-4\pi\underbrace{[Z\delta(\vec{x})-\rho(\vec{x})]}_{=\rho},[/mm]
>
> da sich die Protonenladungsdichte genähert punktförmig im
> Kern befindet und
> [mm]\rho(\vec{x})\equiv\rho_0=\frac{Ze}{V_{Kugel}}=const.[/mm] die
> Elektronenladungsdichte beschreibt.
Nicht ganz: [mm]\rho(\vec{x})[/mm] ist 0 außerhalb der Kugel mit Volumen [mm] $V_{Kugel}$.
[/mm]
>
> Führt man hier eine Fourier-Zerlegung durch, erhält man
> zunächst für die linke Seite (ohne auf weitere Details
> einzugehen) in den k-Raum:
> [mm]FT\{\Delta U(\vec{x}\}=-k^2 FT\{\Delta U\},[/mm] wobei
> [mm]FT\{\Delta U\}[/mm] ja gerade proportional zum gesuchten
> Ausdruck für die Streuamplitude [mm]f_k^{(1)}[/mm] ist.
>
> Für die rechte Seite erhält man (ohne Pachtung der
> Konstanten):
> [mm]FT\{Z\delta(\vec{x})-\rho(\vec{x})\}=Z\int e^{-i\vec{k}\vec{x}}\delta(\vec{x})d^3x-\rho_0\int 1\cdot e^{-i\vec{k}\vec{x}}d^3x=Z-\rho_0\delta(\vec{k})[/mm]
Das zweite Integral rechts geht nur über die Kugel mit Volumen [mm] $V_{Kugel}$, [/mm] nicht über den gesamten [mm] $\\IR^3$.
[/mm]
Viele Grüße
Rainer
|
|
|
|