www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Streng monoton steigend
Streng monoton steigend < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Streng monoton steigend: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:51 Mo 26.03.2007
Autor: Wehm

Aufgabe
Sei I ein nichtleeres Intervall und [mm] f:I\to [/mm] R streng monoton steigend. Ist [mm] f^{-1} [/mm] auch streng monoton steigend?

Hoi.

Wir hatten das damals so gelöst
Sei [mm] $y_1,y_2 \in [/mm] I$ mit [mm] $y_1< y_2$ [/mm]
Annahme: [mm] $f^{-1} (y_1) \ge f^{-1}(y_2)$ [/mm]
[mm] $f(f^{-1}(y_1)) \ge f(f^{-1}(y_2))$ [/mm] Hieraus folgt ein Widerspruch
[mm] $\Rightarrow f^{-1}(y_1) [/mm] < [mm] f^{-1}(y_2)$ [/mm]

Daraus haben wir wohl gefolgert, dass die Umkehrfunktion dann auch streng monoton steigend ist. Mir scheint die Lösung aber [mm] fehlerhaft?$f^{-1} (y_1)$ [/mm] = [mm] x_1. [/mm] Also ist auch [mm] x_1 [/mm] < [mm] x_2 [/mm] und es gilt $ [mm] f(x_1) \ge f(x_2)$ [/mm] Und weil die Ursprungsfunktion streng monoton steigend war is das hier ein widerspruch?

Gruß, Wehm

        
Bezug
Streng monoton steigend: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mo 26.03.2007
Autor: schachuzipus


> Sei I ein nichtleeres Intervall und [mm]f:I\to[/mm] R streng monoton
> steigend. Ist [mm]f^{-1}[/mm] auch streng monoton steigend?
>  Hoi.
>  
> Wir hatten das damals so gelöst
>  Sei [mm]y_1,y_2 \in I[/mm] mit [mm]y_1< y_2[/mm]
>  Annahme: [mm]f^{-1} (y_1) \ge f^{-1}(y_2)[/mm]
>  
> [mm]f(f^{-1}(y_1)) \ge f(f^{-1}(y_2))[/mm] Hieraus folgt ein
> Widerspruch
>  [mm]\Rightarrow f^{-1}(y_1) < f^{-1}(y_2)[/mm]
>  
> Daraus haben wir wohl gefolgert, dass die Umkehrfunktion
> dann auch streng monoton steigend ist. Mir scheint die
> Lösung aber fehlerhaft?[mm]f^{-1} (y_1)[/mm] = [mm]x_1.[/mm] Also ist auch
> [mm]x_1[/mm] < [mm]x_2[/mm] und es gilt [mm]f(x_1) \ge f(x_2)[/mm] [notok]

f ist doch nach Vor. streng monoton steigend, also gilt mit [mm] x_1
Der Widerspruch in der Lösung folgt in der vorletzten Zeile:

[mm] f(f^{-1}(y_1))\ge f(f^{-1}(y_2)) [/mm]

[mm] \gdw id(y_1)\ge id(y_2) \gdw y_1\ge y_2 [/mm]

Das widerspricht  der Wahl von [mm] $y_1 [/mm] und [mm] y_2$ (y_1
Damit ist die Annahme [mm] f^{-1}(y_1)\ge f^{-1}(y_2) [/mm] falsch, es muss also gelten  [mm] f^{-1}(y_1)< f^{-1}(y_2) [/mm]


Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]