www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stokes
Stokes < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stokes: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:40 So 28.12.2008
Autor: Phecda

Hi
ich soll die Formel [mm] \integral_{M}^{}{dw}= \integral_{\partial M}^{}{w} [/mm] an der Fläche der Ellipse, also an
M = [mm] \vektor{x \\ y} [/mm] | [mm] \bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1 [/mm] und w = [mm] \bruch{1}{2}(x*dy-y*dx) [/mm] bestätigen.
das ist ja der satz von stokes.
dw = dx [mm] \wedge [/mm] dy
Ich weiß nun nicht wie ich das integrieren muss. kann mir jmd hier helfen? vieln dank

        
Bezug
Stokes: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 So 28.12.2008
Autor: MathePower

Hallo Phecda,

> Hi
>  ich soll die Formel [mm]\integral_{M}^{}{dw}= \integral_{\partial M}^{}{w}[/mm]
> an der Fläche der Ellipse, also an
>  M = [mm]\vektor{x \\ y}[/mm] | [mm]\bruch{x^2}{a^2}+\bruch{y^2}{b^2}=1[/mm]
> und w = [mm]\bruch{1}{2}(x*dy-y*dx)[/mm] bestätigen.
>  das ist ja der satz von stokes.
>  dw = dx [mm]\wedge[/mm] dy
>  Ich weiß nun nicht wie ich das integrieren muss. kann mir
> jmd hier helfen? vieln dank


Für den Fall von [mm]\omega[/mm] wähle zunächst mal eine geeignete Parametrisierung von M.

Für den Fall von [mm]d\omega[/mm] kannst Du einfach zwischen den Grenzen integrieren,
die durch auflösen der Gleichung für M erhalten werden.
Das entstehende Integral kann dann mit Hilfe einer Substitution gelöst werden.


Es ist

[mm]\integral_{}^{}{dw}=\integral_{}^{}{dx \wedge dy}=\integral_{}^{}{dV_{2}\left(x,y\right)}[/mm]


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]