www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Stoke Integral
Stoke Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stoke Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:45 Do 10.03.2011
Autor: zocca21

Aufgabe
Man hat ein Quadrat M: [mm] [-1,1]^2 [/mm] sowie die Abbildung [mm] \phi [/mm] als Parametrisierung eines Fläcenstück uns das Vektorfeld P.

[mm] \phi [/mm] ; (u,v) -> (u,v, [mm] u^2v^2 [/mm]  - [mm] u^2 [/mm] - [mm] v^2 [/mm] + 1)
P: (x,y,z) -> [mm] (x^2 [/mm] y, - [mm] \bruch{1}{3}x^3, [/mm] z)

Berechnen sie den Wert des Flächenintegrals [mm] \integral \integral_{\phi(M)} [/mm] g * ndO


Nun kann ich ja das ganze einfach direkt berechnen.

Mein g einsetzen und mit dem Normalenvektor(dO) multiplizieren und über die Grenzen berechnen.

Meine Frage nun, das ganze müsste doch aber auch über den Satz von Stoke gehen mit der Divergenz.

Und dazu auch gleich die Frage wann geh ich eher den direkten Weg und wann den mit der Divergenz. Gibt es da irgendwelche Anzeichen in der Aufgabenstellung die mir das verraten?

Vielen Dank

        
Bezug
Stoke Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 00:27 Fr 11.03.2011
Autor: Al-Chwarizmi


> Man hat ein Quadrat M: [mm][-1,1]^2[/mm] sowie die Abbildung [mm]\phi[/mm]
> als Parametrisierung eines Fläcenstück uns das Vektorfeld
> P.
>  
> [mm]\phi[/mm] ; (u,v) -> (u,v, [mm]u^2v^2[/mm]  - [mm]u^2[/mm] - [mm]v^2[/mm] + 1)
>  P: (x,y,z) -> [mm](x^2[/mm] y, - [mm]\bruch{1}{3}x^3,[/mm] z)

>  
> Berechnen sie den Wert des Flächenintegrals
>   [mm]\integral \integral_{\phi(M)}[/mm] g * n dO

Was soll das g bedeuten ?   g = P  ?

  

> Nun kann ich ja das ganze einfach direkt berechnen.
>  
> Mein g einsetzen und mit dem Normalenvektor(dO)
> multiplizieren und über die Grenzen berechnen.
>  
> Meine Frage nun, das ganze müsste doch aber auch über den
> Satz von Stoke gehen mit der Divergenz.    [haee]

Der Satz von Stokes käme allenfalls in Frage, wenn das
gegebene Feld das Rotationsfeld eines anderen Vektor-
feldes F wäre. Und mit Divergenz hat der Satz von Stokes
eigentlich nicht direkt zu tun.
  

> Und dazu auch gleich die Frage wann geh ich eher den
> direkten Weg und wann den mit der Divergenz. Gibt es da
> irgendwelche Anzeichen in der Aufgabenstellung die mir das
> verraten?

In den einschlägigen Aufgabenstellungen werden ja
meistens irgendwelche Hinweise gegeben, wie man
vorgehen soll.
Um derartige Integrale ohne Hilfestellungen elegant
zu lösen, gibt es kaum allgemeine "Tricks". Es ist wie
so oft eine Sache der Übung - aber den meisten fehlt
ja doch die Zeit, um solche Techniken wirklich genügend
ausführlich zu üben, um darin eine Meisterschaft zu
entwickeln. Würde man sich solche Ziele setzen, wären
wohl mehr Mathematik-Wettbewerbe erforderlich in
der Art, wie sie in den osteuropäischen Staaten (UdSSR,
Ukraine, Polen, Rumänien, Bulgarien, auch ehemalige DDR)
lange gepflegt wurden.

LG   Al-Chw.  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]