www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Beispiel
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:59 So 05.07.2015
Autor: magics

Aufgabe
Definition:

n Ereignisse [mm] A_1, [/mm] ..., [mm] A_n [/mm] heißen unabhängig (oder vollständig unabhängig), falls für jede Zahl k = 2, ..., n und jede nichtleere k-elementige Teilmenge [mm] {i_1, i_2, ..., i_k} [/mm] von {1, ..., n}

[mm] P(A_i_1 \cap A_i_2 \cap [/mm] ... [mm] \cap A_i_k [/mm] ) = [mm] P(A_i_1) [/mm] * [mm] P(A_i_2) [/mm] * ... * [mm] P(A_i_k) [/mm]

gilt.

Beispiel (so steht es in einem Lehrbuch):
Ω = {1,2,3,4}, P({i}) = [mm] \bruch{1}{4} [/mm] für i = 1, ..., 4.
Die Ereignisse A  = {1,2}, B = {1,3}, C = {2,3} sind wegen
P(A [mm] \cap [/mm] B) = P(A) * P(B) = [mm] \bruch{1}{4} [/mm]
P(A [mm] \cap [/mm] C) = P(A) * P(C) = [mm] \bruch{1}{4} [/mm]
P(B [mm] \cap [/mm] C) = P(B) * P(C) = [mm] \bruch{1}{4} [/mm]

zwar paarweise unabhängig, aber wegen P(A [mm] \cap [/mm] B \ cap C) = 0 und P(A) * P(B) * P(C) = [mm] \bruch{1}{8} [/mm] nicht (vollständig) unabhängig.

Hallo,

ich habe Fragen zur Definition und zu dem Beispiel, denn ich glaube das Buch hat da einen Schönheitsfehler gemacht.

Die Definition von Wikipedia z.B. sagt, zwei Ereignisse A und B sind stochastisch unabhängig, wenn

P(A [mm] \cap [/mm] B) = P(A) * P(B)

gilt. Entsprechend wären drei Ereignisse A, B, C unabhängig, wenn

P(A [mm] \cap [/mm] B [mm] \cap [/mm] C) = P(A) * P(B) * P(C)

gilt, usw.

Bei der oben gezeigten Definition steht das zwar auch so da, nur was soll das k = 2, ... n? Ich sehe nirgendwo eine Laufvariable bei 2 beginnen und das hat mich total verwirrt. Von sowas lasse ich mich aus dem Konzept bringen.

Das gleiche gilt für das Beispiel. Für mich steht da: "Es gibt in Ω 4 Ereignisse (1,2,3 und 4), die jeweils die Wahrscheinlichkeit P(i) = [mm] \bruch{1}{4}, [/mm] i = 1,...,4 haben.

Ich hätte nun für die Ereignisse A  = {1,2}, B = {1,3}, C = {2,3} folgendes gerechnet:

P(A [mm] \cap [/mm] B) = P(A) * P(B) = [mm] \bruch{1}{4} [/mm] * [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{16} [/mm]
P(A [mm] \cap [/mm] C) = P(A) * P(C) = [mm] \bruch{1}{4} [/mm] * [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{16} [/mm]
P(B [mm] \cap [/mm] C) = P(B) * P(C) = [mm] \bruch{1}{4} [/mm] * [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{16} [/mm]

Entsprechen für
P(A) * P(B) * P(C) = [mm] \bruch{1}{64} [/mm]

------

Während ich das hier tippe habe ich eine Eingebung, warum mal wieder ich und nicht das Buch falsch liege:

Ereignis A tritt ein, wenn 1 oder 2 "gezogen" wird, daher ist
P(A) = [mm] \bruch{1}{4} [/mm] + [mm] \bruch{1}{4} [/mm] = [mm] \bruch{1}{2} [/mm]
Analog für P(B) und P(C).

P(A [mm] \cap [/mm] B \ cap C) = 0, mit der Begründung, dass es kein Element gibt, das in allen drei Ereignissen vorkommt oder?

------

Dann wäre mit klar, wie das Buch auf die Wahrscheinlichkeiten kommt, bliebe (immerhin) noch die Frage mit der Laufzeitvariablen von k = 2,...,n

lg,
magics


        
Bezug
Stochastische Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 So 05.07.2015
Autor: magics

Die Frage hat sich erledigt... kann irgendjemand eine Proforma Antwort geben, damit das Ding grün wird?  (⌐■_■)

lg,
magics

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]