www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Stochastische Unabhängigkeit
Stochastische Unabhängigkeit < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Unabhängigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:33 So 11.05.2014
Autor: Grischa

Aufgabe
<br>
a) Seien X1 und X2 : [mm] \Omega[/mm] -> {0,1} Zufallsgrößen mit P(X1=i, X2=j) = 1/4 für alle i,j = 0,1. Entscheiden Sie, ob X1, X2 stoch unabhängig sind.

b) Berechnen  Sie die Verteilung von X1 + X2 für X1,X2 wie oben.



<br>
Guten Tag,

zur stochastischen Unabhängigkeit ist mir folgendes bewusst: wenn nach A ein Ereignis B eintritt ist die W'keit P(B[mm]\mid[/mm]A) . Wenn diese Bedingte Wahrscheinlichkeit dann gerade P(B) entspricht gilt:  P(A[mm] \cap[/mm]B)= P(A)P(B).

Soviel dazu.

X1 und X2 seien jetzt Zufallsvariablen mit der W'keit P = 1/4.

Ist dann die Schnittmenge dieser nicht immer gleich der leeren Menge?

"Die stochastische Unabhängikeit lässt sich laut Skript jetzt an der Zähldichte erläutern."

Schaffe es jetzt leider nicht die losen Enden, irgendwie zu verbinden.


Viele Grüße und Danke im Vorraus


 

        
Bezug
Stochastische Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 So 11.05.2014
Autor: luis52

Moin,

[mm] $X_1$ [/mm] und [mm] $X_2$ [/mm] sind genau dann unabhaengig, wenn gilt [mm] $P(X_1=i, X_2=j)=P(X_1=i)\cdot P(X_2=j)$. [/mm] Bestimme also die Randverteilungen von [mm] $X_1$ [/mm] und [mm] $X_2$. [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]