www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Stochastische Konvergenz
Stochastische Konvergenz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastische Konvergenz: Idee
Status: (Frage) beantwortet Status 
Datum: 16:58 Do 10.12.2015
Autor: Rocky14

Aufgabe
Seien [mm] A_{n} [/mm] unabhängige Ereignisse mit [mm] \summe_{n \in \IN} P(A_{n}) [/mm] = [mm] \infty. [/mm] Zeige, dass [mm] (\summe_{m=1}^{n} 1_{A_{m}})/(\summe_{m=1}^{n} P(A_{m})) \to [/mm] 1 (stochastische Konvergenz).

Hallo Leute,
könnt ihr mir bei obiger Aufgabe helfen?
Mich verwirrt es, dass nach Voraussetzung die Summe gegen unendlich konvergiert und wenn ich ein paar Elemente entferne und n dann wieder gegen unendlich laufen lasse, dass das ganze dann gegen 1 geht. Bin dankbar für jeden Tipp.

        
Bezug
Stochastische Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Do 10.12.2015
Autor: Gonozal_IX

Hiho,

> Mich verwirrt es, dass nach Voraussetzung die Summe gegen
> unendlich konvergiert und wenn ich ein paar Elemente
> entferne und n dann wieder gegen unendlich laufen lasse,
> dass das ganze dann gegen 1 geht.

Ne das steht da nicht. Oben steht eine Summe von Zufallsvariablen, die dann normiert werden. Macht ja Sinn, dass das gegen 1 läuft :-)

Tipp: Betrachte mal den Erwartungswert.

Gruß,
Gono

Bezug
                
Bezug
Stochastische Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:50 Di 15.12.2015
Autor: Rocky14

Ich wusste leider nicht, wie mir der Erwartungswert helfen sollte. Aber dadurch hast du mich auf die Varianz und damit insbesondere auch auf die Chebychev Ungleichung gebracht. Jetzt ging es auf. Danke nochmal!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]