www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Stochastisch unabhängig
Stochastisch unabhängig < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastisch unabhängig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:24 Di 02.12.2008
Autor: Johie

Aufgabe
Sind P(A) und P(B) stochastisch unabhängig.
|A|= 0,0197
|B|= 0,05625
|A [mm] \cap [/mm] B|=0,004312

Hallo, ich weiß nicht genau, ob ich das hier richtig mache, vielleicht könntet ihr da mal rüber schauen und mir helfen.

Also erst mal gilt ja die Definition:
Zwei Ereignisse A und B mit P(A) und P(B)>0 sind genau dann unabhängig, wenn P(A|B)=P(A).

Zu zeigen: P(A|B)=P(A)
Beweis:
[mm] P(A|B)=\bruch{P(A \cap B)}{P(B)} [/mm] = [mm] \bruch{\bruch{|A \cap B|}{|A|+|B|}}{P(B)} [/mm] = [mm] \bruch{\bruch{0,004312}{0,07595}}{0,05625} [/mm] = [mm] \bruch{0,05677}{0,05625} \approx [/mm] 1,01 [mm] \approx [/mm] 1

Und damit ist es ungleich P(A) und deshalb nicht stochastisch unabhängig.

Ist das richtig?

        
Bezug
Stochastisch unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Di 02.12.2008
Autor: Teufel

Hallo!

Du meinst sicher "Sind A und B stochastisch unabhängig?" und "P(A)=0,0197" usw., oder? Denn die Anzahl der Elemente in A muss ja eine natürliche Zahl (mit 0) sein.

Die Umformung kann ich allerdings nicht ganz nachvollziehen, denn da ergibt sich das selbe Problem.

Wenn es wirklich P(A)=0,0197 sein soll, dann könntest du es so machen:

Wie du schon richtig gesagt hast gilt P(A|B)=P(A), wenn A und B unabhängig sind.

Wenn du erst einmal davon ausgehst, dass A und B unabhängig sind, kannst du schreiben:

[mm] P(A)=\bruch{P(A \cap B)}{P(B)} \gdw [/mm] P(A)*P(B)=P(A [mm] \cap [/mm] B)

Also musst du nur noch gucken, ob P(A)*P(B) das selbe wie P(A [mm] \cap [/mm] B) ist, was sehr einfach sein sollte! Wenn das nicht der Fall sein sollte, gilt nicht P(A|B)=P(A). Was kannst du daraus schlussfolgern?

[anon] Teufel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]