www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Stochastik - Urnenproblem
Stochastik - Urnenproblem < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik - Urnenproblem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:50 Di 12.05.2009
Autor: mathematicus100

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

In einer Urne sind 7 weiße und 5 schwarze Kugeln. 2 Spieler A und B  ziehen abwechselnd und legen nicht zurück. Spieler A zieht zuerst. Das Spiel ist zu Ende, wer zuerst eine weiße Kugel zieht.
Frage: Wie groß ist die Wahrscheinlichkeit, dass Spieler A gewinnt.

Meine (falsche) Lösung:
weiße Kugel = w,   schwarze Kugel = s
A gewinnt, wenn die Ereigniss {w; sw; ssw; sssw; ssssw} eintreten.

Beim ersten Zug ist P(w) = 7/12
Beim zweiten Zug muss B  schwarz ziehen und A weiß:
P(sw) = 5/12 * 7/11

und so weiter.

Ich berechne also nach der 1. und 2. Pfadregel P(w) + P(sw) + P(ssw)+ P(sssw)+P(ssssw), also

7/12 + 5/12*7/11 + 5/12*4/11*7/10 + 5/12*4/11*3/10*7/9 + 5/12*4/11*3/10*2/9*7/8

Dieser Wert ist größer 1  - das kann nicht sein.

wo ist der Fehler?



        
Bezug
Stochastik - Urnenproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Di 12.05.2009
Autor: barsch

Hi,

du hast einen kleinen "Denkfehler".

> weiße Kugel = w,   schwarze Kugel = s

okay

> A gewinnt, wenn die Ereigniss {w; sw; ssw; sssw; ssssw} eintreten.

Stimmt das denn wirklich?

Nach Voraussetzung zieht Spieler A zuerst. Danach wird abwechselnd gezogen, das heißt, als erstes zieht Spieler A, dann Spieler B, erneut Spieler A ... Stop, erkennst du etwas? Spieler A kann im zweiten Zug gar nicht gewinnen, weil er überhaupt nicht am Zug ist. Ebenso kann A nicht im 4. Zug gewinnen.
Spieler A kann nur gewinnen, wenn er am Zug ist. Und in welchen Zügen kann Spieler A dann nur gewinnen?

MfG barsch

Bezug
                
Bezug
Stochastik - Urnenproblem: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:27 Di 12.05.2009
Autor: mathematicus100

ja, ich hab's :-)

besser wär es gewesen A zieht weiß = aw,A zieht schwarz = as, b zieht weiß = bw, b zieht schwarz = bs

Also gewiinnt A , wenn die Ereignisse {aw; asbsaw; asbsasbsaw} eintreten

Wenn ich das ausrechne, komme ich auf 0,6982




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]