www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Stochastik
Stochastik < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 20.01.2011
Autor: Dust

Aufgabe
X sei eine Zufallsvariable mit E(X) = 3,5 und V(X) = 2

Berechnen Sie mithilfe der Rechenregeln den Erwartungswert, die Varianz und Standardabweichung der Zufallsvariablen Y mit Y = 2 * X + 3 .

Guten Abend,

Es gilt [mm] E(Y) = E(2X + 3) = E(2X) + E(3) = 2 * E(X) + 3 = 10 [/mm]

und

        [mm] V(Y) = V(2X + 3) = 2^2 * V(X) = 8 [/mm]

so steht das in meinem Lehrbuch.

Meine Rechnung für V(Y) sieht aber so aus:

[mm] V(Y) = V(2X + 3) = V(2X) + V(3) = 2 * V(X) + V(3) = 2 * 2 + 3 = 7 [/mm]

Ich frage deshalb ob der Fehler bei mir liegt .

Vielen Dank für euere Hilfe

Ich habe die Frage in keinen anderen Forum gestellt.

Gruß Dust


        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Do 20.01.2011
Autor: schachuzipus

Hallo,

> X sei eine Zufallsvariable mit E(X) = 3,5 und V(X) = 2
>
> Berechnen Sie mithilfe der Rechenregeln den Erwartungswert,
> die Varianz und Standardabweichung der Zufallsvariablen Y
> mit Y = 2 * X + 3 .
> Guten Abend,
>
> Es gilt [mm]E(Y) = E(2X + 3) = E(2X) + E(3) = 2 * E(X) + 3 = 10[/mm]
>
> und
>
> [mm]V(Y) = V(2X + 3) = 2^2 * V(X) = 8[/mm]
>
> so steht das in meinem Lehrbuch.
>
> Meine Rechnung für V(Y) sieht aber so aus:
>
> [mm]V(Y) = V(2X + 3) = V(2X) + V(3) = 2 * V(X) + V(3) = 2 * 2 + 3 = 7[/mm]
>
> Ich frage deshalb ob der Fehler bei mir liegt .

Ja, nach dem 2ten "=" steht was Falsches.

Die Varianz ist (im Gegensatz zum Erwartungswert) nicht linear!

Es gilt nicht(!!):

[mm]\operatorname{Var}(a\cdot{}X+b)=a\cdot{}\operatorname{Var}(X)+\operatorname{Var}(b)[/mm] (wie es beim Erwartungswert ist)

Sondern vielmehr:

[mm]\red{\operatorname{Var}(a\cdot{}X+b)=a^2\cdot{}\operatorname{Var}(X)}[/mm]


Ein Beweis dazu steht etwa auf wikipedia

>
> Vielen Dank für euere Hilfe
>
> Ich habe die Frage in keinen anderen Forum gestellt.
>
> Gruß Dust


LG

schachuzipus

>


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]