www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Stochastik
Stochastik < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik: Mangelhafte Exemplare
Status: (Frage) beantwortet Status 
Datum: 15:47 Mo 12.11.2007
Autor: barsch

Aufgabe
In einem Verlag werden 10.000 Bücher gedruckt; pro Buch besteht eine Chance von [mm] 10^{-4}, [/mm] dass es sich um ein Mangelexemplar handelt.

Modellieren sie die zufällige Anzahl X der mangelhaften Bücher.

Hi,

so lautet 1:1 die Aufgabenstellung. Mich irritiert die Aufgabenstellung ein wenig.

Es werden 10.000 Bücher geruckt; jedes Buch hat die Chance [mm] 10^{-4}, [/mm] dass es mangelhaft ist.
Mit Chance, nehme ich an, ist die Wahrscheinlichkeit gemeint?! Aber wie soll ich das jetzt ausrechnen?

Muss ich das über den Erwartungswert machen?

Aber wie berechne ich das mit dem Erwartungswert?

Bin für jede Hilfe dankbar.

MfG barsch

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 12.11.2007
Autor: luis52

Hallo Barsch,

> In einem Verlag werden 10.000 Bücher gedruckt; pro Buch
> besteht eine Chance von [mm]10^{-4},[/mm] dass es sich um ein
> Mangelexemplar handelt.
>  
> Modellieren sie die zufällige Anzahl X der mangelhaften
> Bücher.
>  Hi,
>  
> so lautet 1:1 die Aufgabenstellung. Mich irritiert die
> Aufgabenstellung ein wenig.
>  
> Es werden 10.000 Bücher geruckt; jedes Buch hat die Chance
> [mm]10^{-4},[/mm] dass es mangelhaft ist.
> Mit Chance, nehme ich an, ist die Wahrscheinlichkeit
> gemeint?! Aber wie soll ich das jetzt ausrechnen?

Na, zunaechst ist die Anzahl X der Maengelexemplare
binomialverteilt mit $n=10000$ und $p=0.0001$. Da aber hier
n gross und p klein ist, kann man die Verteilung von X durch eine
Poissonverteilung mit [mm] $\lambda=np=1$ [/mm] approximieren.

lg Luis

Bezug
                
Bezug
Stochastik: Kurze Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:35 Mo 12.11.2007
Autor: barsch

Hi,

danke für die Hilfe.

Also die Poissonverteilung lautet:

[mm] P(k)=\bruch{\lambda^k}{k!}*e^{-\lambda} [/mm]

mit [mm] \lambda=np=1 [/mm] ergibt sich:

[mm] P(k)=\bruch{1}{k!}*e^{-1} [/mm]

Und k ist dann meine Variable. Ich dachte, man müsse einen konkreten Wert berechnen, scheint aber nicht der Fall zu sein?!

MfG barsch





Bezug
                        
Bezug
Stochastik: Modell
Status: (Antwort) fertig Status 
Datum: 17:50 Mo 12.11.2007
Autor: Infinit

Hallo barsch,
bei dieser Aufgabe sollte kein Erwartungswert oder ähnliches gebildet werden, sondern das Wahrscheinlichkeitsmodell für das Auftreten fehlerbehafteter Bücher. Das Modell mit den Näherungen, di eingeführt werden, läuft eben auf eine Poisson-Verteilung raus. Mit dieser kannst Du dann natürlich weiterrechnen, aber das war hier nicht gefragt.
Viele Grüße,
Infinit

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]