www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Stochastik
Stochastik < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stochastik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Sa 11.09.2021
Autor: knorki7

Aufgabe
Ein Wirt hat die Möglichkeit, entweder ein Restaurant in der Stadt zu betreiben, das erfahrungsgemäß nach Abzug der Kosten für Pacht, Personal etc. einen täglichen Gewinn von 170 Euro pro Tag einbringt, oder ein Restaurant bei der Mittelstation des nahegelegten Bergs zu eröffnen. Hier ist ein Gewinn (nach Abzug der Kosten) von 500 Euro pro Tag bei gutem Wetter, 40 euro bei mäßigem Wetter und kein Gewinn bei schlechtem Wetter zu erwarten. Aufgrund von Wetterstudien dieser Region ist davon auszugehen, dass im Verlauf des Jahres im durchschnitt an einem von drei Tagen mit gutem Wetter und an drei von acht Tagen mit mäßigem Wetter zu rechnen ist.



a) Für welches Restaurant sollte sich der Wirt entscheiden?

b) Berechnen Sie die Standardabweichung und interpreteiern sie ihr ergebnis im sachzusammenhang

c) In einem Jahr ist zu erwarten, dass der Anteil der Tage mit schlechtem wetter größer ist, während nach wie vor an einem von drei tagen mit gutem wetter zu rechnen ist. Wie groß darf der Anteil an tagen mit schlechtem wetter sein, damit das restaurant mind. genauso viel gewinn abwirft, wie das restaurant in der stadt?

Ich glaube, dass ich es soweit verstanden und auch richtig berechnet habe. Muss es allerdings vorstellen, würde daher lieber auf Nummer sicher gehen.

a) E(x) = 500* 1/3 + 40 * 3/8 + 0 * (1-1/3-3/8) = 181,67

b) o = [mm] sqrt[(500-181,67)^2 [/mm] * 1/3 + [mm] (40-181,67)^2 [/mm] * 3/8] = 203,23

c) 170 = 500 * 1/3 + 40 * 3/8 + 0 * x
das war mein erster Ansatz, aber mit 0*x macht das ja keinen Sinn.

Daher habe ich es so versucht:

170 <= 500 * 1/3 + 40*x
x >= 1/12

Heißt dann 1/3 gutes wetter, 1/12 mäßiges wetter und damit bleibt sozusagen als letzte größe noch 1-1/3-1/12 = 7/12 für das schlechte wetter, damit mindestens 170€ gewinn pro Tag bleiben.

Stimmt das soweit?!

        
Bezug
Stochastik: Antwort
Status: (Antwort) fertig Status 
Datum: 07:27 So 12.09.2021
Autor: statler

Guten Morgen!

> Ein Wirt hat die Möglichkeit, entweder ein Restaurant in
> der Stadt zu betreiben, das erfahrungsgemäß nach Abzug
> der Kosten für Pacht, Personal etc. einen täglichen
> Gewinn von 170 Euro pro Tag einbringt, oder ein Restaurant
> bei der Mittelstation des nahegelegten Bergs zu eröffnen.
> Hier ist ein Gewinn (nach Abzug der Kosten) von 500 Euro
> pro Tag bei gutem Wetter, 40 euro bei mäßigem Wetter und
> kein Gewinn bei schlechtem Wetter zu erwarten. Aufgrund von
> Wetterstudien dieser Region ist davon auszugehen, dass im
> Verlauf des Jahres im durchschnitt an einem von drei Tagen
> mit gutem Wetter und an drei von acht Tagen mit mäßigem
> Wetter zu rechnen ist.
>  
>
>
> a) Für welches Restaurant sollte sich der Wirt
> entscheiden?
>  
> b) Berechnen Sie die Standardabweichung und interpreteiern
> sie ihr ergebnis im sachzusammenhang
>  
> c) In einem Jahr ist zu erwarten, dass der Anteil der Tage
> mit schlechtem wetter größer ist, während nach wie vor
> an einem von drei tagen mit gutem wetter zu rechnen ist.
> Wie groß darf der Anteil an tagen mit schlechtem wetter
> sein, damit das restaurant mind. genauso viel gewinn
> abwirft, wie das restaurant in der stadt?
>  Ich glaube, dass ich es soweit verstanden und auch richtig
> berechnet habe. Muss es allerdings vorstellen, würde daher
> lieber auf Nummer sicher gehen.
>  
> a) E(x) = 500* 1/3 + 40 * 3/8 + 0 * (1-1/3-3/8) = 181,67

Der Antwortsatz: ....

>  
> b) o = [mm]sqrt[(500-181,67)^2[/mm] * 1/3 + [mm](40-181,67)^2[/mm] * 3/8] =
> 203,23

Und wie interpretierst du das? Bemerken möchte ich, daß die Angaben unrealistisch sind, da der Gewinn immer [mm] $\ge$ [/mm] 0 ist. Das wird an einem Tag, an dem niemand kommt, eher nicht der Fall sein.

>  
> c) 170 = 500 * 1/3 + 40 * 3/8 + 0 * x
> das war mein erster Ansatz, aber mit 0*x macht das ja
> keinen Sinn.
>  
> Daher habe ich es so versucht:
>
> 170 <= 500 * 1/3 + 40*x
>  x >= 1/12
>  
> Heißt dann 1/3 gutes wetter, 1/12 mäßiges wetter und
> damit bleibt sozusagen als letzte größe noch 1-1/3-1/12 =
> 7/12 für das schlechte wetter, damit mindestens 170€
> gewinn pro Tag bleiben.
>  
> Stimmt das soweit?!  

Ja, aber ich hätte die Gleichung etwas anders hingeschrieben. Der Anteil der mäßigen und der schlechten Tage muß zusammen [mm] $\frac{2}{3}$ [/mm] sein, also ist die Gleichung
(wenn $x$ der Anteil der schlechten Tage ist)
[mm] $500*\frac{1}{3} [/mm] + [mm] 40*(\frac{2}{3} [/mm] - x) + 0*x [mm] \ge [/mm] 170$
Damit kriege ich $x [mm] \le \frac{7}{12}$ [/mm]

Gruß
Dieter


Bezug
                
Bezug
Stochastik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:39 Mo 13.09.2021
Autor: knorki7

Danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]