www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Stirlingzahlen berechnen
Stirlingzahlen berechnen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stirlingzahlen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:34 Di 10.02.2015
Autor: Mopsi

Hallihallo :)

Wie berechne ich die Stirlingzahlen? Diese Frage stelle ich mir, und habe in dem Wikipediaartikel für die Stirlingzahlen neben diesen für mich unverständlichen Formeln auch eine Art pascalsches Dreieck für die Stirlingzahlen erster und zweiter Art gefunden. Nur leider gibt es da keine Erklärung, wie man auf die Werte kommt. 
Kann mir bitte jemand erklären wie man diese Dreiecke bildet und wie man die Stirlingzahlen abliest?

​http://de.m.wikipedia.org/wiki/Stirling-Zahl
 

        
Bezug
Stirlingzahlen berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Di 10.02.2015
Autor: abakus


> Hallihallo :)

>

> Wie berechne ich die Stirlingzahlen? Diese Frage stelle ich
> mir, und habe in dem Wikipediaartikel für die
> Stirlingzahlen neben diesen für mich unverständlichen
> Formeln auch eine Art pascalsches Dreieck für die
> Stirlingzahlen erster und zweiter Art gefunden. Nur leider
> gibt es da keine Erklärung, wie man auf die Werte
> kommt. 

Das stimmt nicht. Nach
"Die Karamata-Notation betont die Analogie:" ist die Vorschrift angegeben.


> Kann mir bitte jemand erklären wie man diese Dreiecke
> bildet und wie man die Stirlingzahlen abliest?

>

> ​http://de.m.wikipedia.org/wiki/Stirling-Zahl
>  

Bezug
        
Bezug
Stirlingzahlen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:49 Di 10.02.2015
Autor: Gonozal_IX

Hiho,

> Hallihallo :)
>  
> Wie berechne ich die Stirlingzahlen? Diese Frage stelle ich
> mir, und habe in dem Wikipediaartikel für die
> Stirlingzahlen neben diesen für mich unverständlichen
> Formeln auch eine Art pascalsches Dreieck für die
> Stirlingzahlen erster und zweiter Art gefunden. Nur leider
> gibt es da keine Erklärung, wie man auf die Werte
> kommt. 

Doch, genau das steht in dem Artikel in diesen für dich "unverständlichen Formeln".

Für die Sterling-Zahlen erster Art, gilt die Rekursionsformel:

[mm] $s_{n+1,k} [/mm] = [mm] s_{n,k-1} [/mm] + [mm] ns_{n,k}$ [/mm]

Wie im Pascalschen Dreieck fängt man im Stirling-Dreieck die Reihen mit 0 an zu zählen und dann ergibt sich obige Formel in Reihe n in Worten zu:

"Nimm die Zahl links drüber und addiere dazu das n-fache der Zahl rechts drüber."

Wobei gilt: Gibt es keine Zahl "links drüber" oder "rechts drüber", ist 0 stattdessen zu verwenden.

Für die Stirling-Zahlen zweiter Art hat man die Formel:
[mm] $S_{n+1,k} [/mm] = [mm] S_{n,k-1} [/mm] + [mm] kS_{n,k}$ [/mm]

Und demzufolge bei gleichen Regeln den Satz an Stelle k:

"Nimm die Zahl links drüber und addiere dazu das k-fache der Zahl rechts drüber."

Gruß,
Gono

Bezug
                
Bezug
Stirlingzahlen berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:25 Di 10.02.2015
Autor: Mopsi

Super erklärt! Vielen Dank Gonozal :)

Bezug
                
Bezug
Stirlingzahlen berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Di 10.02.2015
Autor: Mopsi

Nun habe ich doch noch eine Frage.

​Stimmt das ehrlich das man bei k=0 anfängt? Denn bei den Stirlingzahlen zweiter Art müssten dann doch alle Werte ganz links 0 sein. Sie sind aber 1, warum?

Bezug
                        
Bezug
Stirlingzahlen berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:47 Mi 11.02.2015
Autor: Gonozal_IX

Hiho,

> ​Stimmt das ehrlich das man bei k=0 anfängt?

nein.
Aber auch das hätte man mit Lesen selbst rausfinden können, im Artikel steht ja:

Dreieck für Stirling-Zahlen (erste Zeile n=1, erste Spalte k=1)

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]