www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit zeigen
Stetigkeit zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit zeigen: guuuuuuter tipp ^^
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:26 Di 22.04.2008
Autor: eumel

Aufgabe
Es sei [mm] f:\IR\mapsto[0,1] [/mm] eine stetige funktion mit (f|[x,y] soll heißen: f eingeschränkt auf) f|[0,1/3] = 0, f|[2/3,1]=1 sowie f(x+2)=f(x) für alle [mm] x\in\IR [/mm] .
Ferner sei [mm] c:[0,1]\mapsto\IR^2 [/mm] , [mm] t\mapsto\vektor{x(t) \\ y(t)} [/mm] mit
[mm] x(t)=\summe_{i=1}^{\infty}\bruch{1}{2^{n}}*f(3^{2n-1}*t) [/mm]
[mm] y(t)=\summe_{i=1}^{\infty}\bruch{1}{2^{n}}*f(3^{2n}*t) [/mm]

zeigen sie:
-c ist stetig
-Jede stetige,surjektive kurve
[mm] \overline{c}:[0,1]\mapsto[0,1]^2 [/mm] ist nicht rektifizierbar

moin ^^
um zu zeigen, dass c stetig ist müssen ja x(t) und y(t) stetig sein....
bei x(t) weiß man ja, dass die ungeraden zahlen laut der einschränkung auf 1 abgebildet werden, also f(2n-1) = 1 für alle n und f(2n) = 0 für alle 0. nur mit dem t wirds ja bissle komplizierter und wie ich bei dieser fkt mittels epsilon-delta-krit. die stetigkeit nachweisen kann..... kein plan.... wüsst net mal wie ich das delta überhaupt abschätzen könnte....

gr
bene

        
Bezug
Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Mi 23.04.2008
Autor: M.Rex

Hallo

> Es sei f:|R --> [0,1] eine stetige funktion mit (f|[x,y]
> soll heißen: f eingeschränkt auf) f|[0,1/3] = 0,
> f|[2/3,1]=1 sowie f(x+2)=f(x) für alle x aus |R.
>  Ferner sei [mm]c:[0,1]->|R^2[/mm] , t-> [mm]\vektor{x(t) \\ y(t)}[/mm] mit

>  x(t) =
> [mm]\summe_{i=1}^{\infty}\bruch{1}{2^{n}}*f(3^{2n-1}*t)[/mm]
>  y(t) = [mm]\summe_{i=1}^{\infty}\bruch{1}{2^{n}}*f(3^{2n}*t)[/mm]
>  
> zeigen sie:
>  -c ist stetig
>  -Jede stetige,surjektive kurve
> [mm]\overline{c}:[0,1][/mm] --> [mm][0,1]^2[/mm] ist nicht rektifizierbar
>  moin ^^
>  um zu zeigen, dass c stetig ist müssen ja x(t) und y(t)
> stetig sein....

So ist es.

>  bei x(t) weiß man ja, dass die ungeraden zahlen laut der
> einschränkung auf 1 abgebildet werden, also f(2n-1) = 1 für
> alle n und f(2n) = 0 für alle 0. nur mit dem t wirds ja
> bissle komplizierter und wie ich bei dieser fkt mittels
> epsilon-delta-krit. die stetigkeit nachweisen kann.....
> kein plan.... wüsst net mal wie ich das delta überhaupt
> abschätzen könnte....
>  

Versuch es doch mal mit dem Folgenkriterium, also folgendem Satz:

Sei f eine Funktion [mm] f:A/{a}\to\IW [/mm] und [mm] y\in\IW. [/mm]
Dann ist f an der Stelle a stetig, wenn [mm] y=\limes_{x\to{a}}f(x). [/mm]

> gr
>  bene

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]