www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Stetigkeit verketteter Funkt.
Stetigkeit verketteter Funkt. < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit verketteter Funkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Do 12.03.2009
Autor: Bit2_Gosu

Hi!

Zu zeigen ist Folgendes: Ist g eine in [mm] x_{0} [/mm] stetige Funktion und f eine in [mm] g(x_{0}) [/mm] stetige Funktion, dann ist f(g(x)) eine in [mm] x_{0} [/mm] stetige Funktion.

Es gilt also:

I:  [mm] \limes_{x\rightarrow x_{0}}g(x)=g(x_{0}) [/mm]

II:  [mm] \limes_{x\rightarrow g(x_{0})}f(x)=f(g(x_{0})) [/mm]

Das Buch meint, man bräuchte I und II, um den Beweis durchzuführen, ich finde aber, es reicht eine von beiden:

zum Beispiel:

[mm] \limes_{x\rightarrow x_{0}}f(g(x))=f(g(x_{0})) [/mm] denn die x in g(x) werden zu [mm] x_{0} [/mm] und wegen I steht schließlich in der f() Klammer [mm] g(x_{0}) [/mm]

wo ist mein Denkfehler?

        
Bezug
Stetigkeit verketteter Funkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 Do 12.03.2009
Autor: leduart

Hallo
Nimm an, [mm] f(x_0)=1 [/mm] f(x)=0 sonst.
g(x)=1 stetig
was ist [mm] f(g(x_0) [/mm] bei [mm] x_0? [/mm]
ich geb zu, das Beispiel ist einfach, aber es zeigt doch, dass du Unrecht hast.
Gruss leduart


Bezug
                
Bezug
Stetigkeit verketteter Funkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:50 Do 12.03.2009
Autor: Bit2_Gosu

Dein Beispiel hat mir geholfen! Danke!

Aber ich glaube du müsstest eigentlich sagen: g(x)=x, denn in deinem Beispiel wäre die Antwort auf deine Frage: stetig (in der Stelle 1)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]