www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit tan(x)
Stetigkeit tan(x) < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit tan(x): Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:18 Mi 06.01.2010
Autor: thegeni

Aufgabe
Sei D die Teilmenge D= [mm] \IR \backslash \{ (n+\bruch{1}{2}) \pi | n \in \IZ \}. [/mm]
Wir definieren den Tangens als die Abbildung
[mm] \tan: [/mm] D [mm] \to \IR,x\mapsto \bruch{\sin(x)}{\cos(x)}. [/mm]

Zeige, dass tan stetig ist.

Ich habe es versucht mit dem Folgenkriterium zu Beweisen:

[mm] \forall (x_n)_{n \in \IN} [/mm] mit [mm] \limes_{n\rightarrow\infty} x_n [/mm] = [mm] {\tilde_x}: \limes_{n\rightarrow\infty} f(x_n)=f({\tilde_x}) [/mm] und [mm] x_n \in [/mm] D, [mm] \forall [/mm] n [mm] \in \IN [/mm]

1) [mm] \limes_{n\rightarrow\infty} f(x_n) [/mm] = [mm] \limes_{n\rightarrow\infty} \tan(x_n) [/mm] = [mm] \tan({\tilde_x}) [/mm]

2) [mm] \limes_{x \searrow {\tilde_x}} [/mm] f(x) = [mm] \limes_{n\rightarrow\infty} f(x_n) [/mm] = [mm] \limes_{n\rightarrow\infty} \tan(x_n) [/mm] = [mm] \tan({\tilde_x}) \wedge x_n [/mm] > [mm] \tilde_x [/mm]

3) [mm] \limes_{x \nearrow {\tilde_x}} [/mm] f(x) = [mm] \limes_{n\rightarrow\infty} f(x_n) [/mm] = [mm] \limes_{n\rightarrow\infty} \tan(x_n) [/mm] = [mm] \tan({\tilde_x}) \wedge x_n [/mm] <= [mm] \tilde_x [/mm]


Jetzt ist meine frage, ist das so Richtig? oder fehlt mir da noch was zu einem Beweis.

vielen Dank im Voraus

Gruß

TheGeni

Ich habe diese Frage in keinem anderen Froum gestellt.

        
Bezug
Stetigkeit tan(x): Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mi 06.01.2010
Autor: abakus


> Sei D die Teilmenge D= [mm]\IR \backslash \{ (n+\bruch{1}{2}) \pi | n \in \IZ \}.[/mm]
> Wir definieren den Tangens als die Abbildung
> [mm]\tan:[/mm] D [mm]\to \IR,x\mapsto \bruch{\sin(x)}{\cos(x)}.[/mm]
>  
> Zeige, dass tan stetig ist.
>  Ich habe es versucht mit dem Folgenkriterium zu Beweisen:
>  
> [mm]\forall (x_n)_{n \in \IN}[/mm] mit [mm]\limes_{n\rightarrow\infty} x_n[/mm]
> = [mm]{\tilde_x}: \limes_{n\rightarrow\infty} f(x_n)=f({\tilde_x})[/mm]
> und [mm]x_n \in[/mm] D, [mm]\forall[/mm] n [mm]\in \IN[/mm]
>  
> 1) [mm]\limes_{n\rightarrow\infty} f(x_n)[/mm] =
> [mm]\limes_{n\rightarrow\infty} \tan(x_n)[/mm] = [mm]\tan({\tilde_x})[/mm]
>  
> 2) [mm]\limes_{x \searrow {\tilde_x}}[/mm] f(x) =
> [mm]\limes_{n\rightarrow\infty} f(x_n)[/mm] =
> [mm]\limes_{n\rightarrow\infty} \tan(x_n)[/mm] = [mm]\tan({\tilde_x}) \wedge x_n[/mm]
> > [mm]\tilde_x[/mm]
>  
> 3) [mm]\limes_{x \nearrow {\tilde_x}}[/mm] f(x) =
> [mm]\limes_{n\rightarrow\infty} f(x_n)[/mm] =
> [mm]\limes_{n\rightarrow\infty} \tan(x_n)[/mm] = [mm]\tan({\tilde_x}) \wedge x_n[/mm]
> <= [mm]\tilde_x[/mm]
>  
>
> Jetzt ist meine frage, ist das so Richtig? oder fehlt mir
> da noch was zu einem Beweis.
>
> vielen Dank im Voraus
>  
> Gruß
>  
> TheGeni
>  
> Ich habe diese Frage in keinem anderen Froum gestellt.

Hallo,
wieso beziehst du dich nicht einfach auf die Stetigkeit von Sinus und Kosinus?
Gruß Abakus

Bezug
                
Bezug
Stetigkeit tan(x): Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:04 Mi 06.01.2010
Autor: thegeni

Das ist natürlich auch eine möglichkeit, jedoch würde mich trotzdem interesieren ob der beweis so in ordnung ist.

Gruß

TheGeni

Bezug
                        
Bezug
Stetigkeit tan(x): Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Mi 06.01.2010
Autor: leduart

Hallo
Du hast eigentlich nichts gemacht, ausser die Behauptung wieder umgeformt hinzuschreiben, in dem du die Folgenstetigkeit ausführlich hingeschrieben hast. (es fehlt dabei noch: für beliebige Folgen [mm] x_n) [/mm]
warum sind etwa eineige punkte vin [mm] \IR [/mm] ausgeschlossen?
aber von tan weisst du nur tan=sin/cos
da braucht es den ein oder anderen zitierten Satz, um nen Beweis zu machen.
Gruss leduart


Bezug
        
Bezug
Stetigkeit tan(x): Korrekturen
Status: (Antwort) fertig Status 
Datum: 23:43 Mi 06.01.2010
Autor: tobit09

Hallo TheGeni,

als Ergänzung zu den bisherigen Antworten hier noch Kommentare zu den einzelnen Stellen deines Textes:

>  Ich habe es versucht mit dem Folgenkriterium zu Beweisen:
>  
> [mm]\forall (x_n)_{n \in \IN}[/mm] mit [mm]\limes_{n\rightarrow\infty} x_n[/mm] = [mm]{\tilde_x}: \limes_{n\rightarrow\infty} f(x_n)=f({\tilde_x})[/mm] und [mm]x_n \in[/mm] D, [mm]\forall[/mm] n [mm]\in \IN[/mm]

Das sollte heißen: [mm]\forall (x_n)_{n \in \IN}[/mm] mit [mm]x_n\in D[/mm] [mm]\forall n\in\IN[/mm] und [mm]\limes_{n\rightarrow\infty} x_n[/mm] = [mm]{\tilde_x}: \limes_{n\rightarrow\infty} f(x_n)=f({\tilde_x})[/mm].

> 1) [mm]\limes_{n\rightarrow\infty} f(x_n)[/mm] = [mm]\limes_{n\rightarrow\infty} \tan(x_n)[/mm] = [mm]\tan({\tilde_x})[/mm]

Das rechte Gleichheitszeichen ist überhaupt nicht klar, solange man nicht weiß, dass tan stetig ist. Genau diese Gleichheit ist für die Stetigkeit von tan zu beweisen!

> 2) [mm]\limes_{x \searrow {\tilde_x}}[/mm] f(x) = [mm]\limes_{n\rightarrow\infty} f(x_n)[/mm] = [mm]\limes_{n\rightarrow\infty} \tan(x_n)[/mm] = [mm]\tan({\tilde_x}) \wedge x_n[/mm] > [mm]\tilde_x[/mm]
>  
> 3) [mm]\limes_{x \nearrow {\tilde_x}}[/mm] f(x) = [mm]\limes_{n\rightarrow\infty} f(x_n)[/mm] = [mm]\limes_{n\rightarrow\infty} \tan(x_n)[/mm] = [mm]\tan({\tilde_x}) \wedge x_n[/mm] <= [mm]\tilde_x[/mm]

Was tust du da? Anscheinend versuchst du bei 2) die rechtsseitige und bei 3) die linksseitige Stetigkeit nachzuweisen. Das ist grundsätzlich auch eine Möglichkeit, die Stetigkeit einer Funktion zu zeigen. Dann verstehe ich aber nicht, wozu du 1) brauchst? Oder andersrum: wozu würdest du 2) und 3) brauchen, wenn du 1) gezeigt hättest?
Ansonsten gilt für 2) und 3) Analoges zu den oben beschriebenen Kritikpunkten.

Lass dich nicht entmutigen, mit dem Vorschlag von abakus scheinst du ja zurecht zu kommen!

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]