www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit rationaler Funktion
Stetigkeit rationaler Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit rationaler Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Di 13.07.2010
Autor: denzil

Aufgabe
[mm]f:\IQ\to\IQ[/mm] mit der Zuordnung [mm] x\mapsto\begin{cases} -1 & \mbox{für } x < \sqrt{2}\\ 1 & \mbox{für } x > \sqrt{2}\end{cases}[/mm].

Diese Funktion soll angeblich stetig sein. Mir ist nur nicht klar warum... Betrachte ich die Funktion auf ihrem Definitionsbereich [mm] \IQ [/mm] und überprüfe die Stetigkeit in [mm]x_0 = \sqrt{2} [/mm] mittels des Folgenkriteriums erhalte ich doch mit [mm]f(a_b)=-1[/mm], bzw. [mm]f(b_n)=1[/mm] zwei komplett unterschiedliche Grenzwerte.

Kann mir das jemand bitte kurz erklären?

        
Bezug
Stetigkeit rationaler Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Di 13.07.2010
Autor: Gonozal_IX

Huhu,

das Folgenkriterium kannst du hier an der Stelle [mm] \sqrt{2} [/mm] nicht anwenden. Damit f nach Folgenkriterium stetig ist, muss ja für alle [mm] $x_0 \in [/mm] D(f)$ gelten:

[mm] $\limes_{x_n\rightarrow x_0}f(x_n) [/mm] = [mm] f(x_0)$ [/mm]

Offensichtlich gilt das für alle [mm] x_0 [/mm] aus dem Definitionsbereich (warum?)
Fang dazu einfach ganz formal an:

Sei [mm] $x_0 \in [/mm] D(f)$, dann Fallunterscheidung und bedenke, dass wenn x < y es immer ein [mm] $\varepsilon [/mm] > 0$ gibt, so dass auch $x + [mm] \varepsilon [/mm] < y$.
Und da [mm] $x_n \to x_0$ [/mm] gilt, gilt für ausreichend große n insbesonder was für die [mm] x_n [/mm] ?

Ebenso beim [mm] $\varepsilon$-$\delta$-Kriterium. [/mm]
Da nutzt man die gleiche Eigenschaft, dass [mm] $x+\varepsilon [/mm] < y$
Fang einfach mal an :-)

MFG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]