www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit im Nullpunkt
Stetigkeit im Nullpunkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit im Nullpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:52 Mi 12.12.2007
Autor: blacksoul

Aufgabe
(a) Für die Funktion f : [mm] \IR \to \IR [/mm] gelte f(0) = 1 sowie
     f(x + y) = f(x) f(y)  für alle x,y [mm] \in \IR [/mm] .
     Man zeige: Ist f im Nullpunkt stetig, so ist f auf ganz [mm] \IR [/mm] stetig.

(b) Für die Funktion g : [mm] \IR \to \IR [/mm] gelte |g(x)| [mm] \le [/mm] M für alle x [mm] \in \IR [/mm] .
     Zeigen Sie: die Funktion f : [mm] \IR \to \IR [/mm] , f(x) := xg(x) ist in 0 stetig.

komme mit der aufgabenstellung überhaupt nicht klar bzw. ich weiß einfach nicht wie ich anfangen soll. das thema stetigkeit ist leider noch recht neu und macht mir noch ein paar probleme.
ich möchte aber gerne versuchen die aufgabe alleine lösen, benötige aber ein paar tipps dazu.
wäre also echt super wenn jemand eine idee zu der aufgabe hätte :)


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Stetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Mi 12.12.2007
Autor: MatthiasKr

Hi,
> (a) Für die Funktion f : [mm]\IR \to \IR[/mm] gelte f(0) = 1 sowie
>       f(x + y) = f(x) f(y)  für alle x,y [mm]\in \IR[/mm] .
>       Man zeige: Ist f im Nullpunkt stetig, so ist f auf
> ganz [mm]\IR[/mm] stetig.

die gleiche aufgabe wird unter

https://matheraum.de/read?t=339914

behandelt.

>  
> (b) Für die Funktion g : [mm]\IR \to \IR[/mm] gelte |g(x)| [mm]\le[/mm] M für
> alle x [mm]\in \IR[/mm] .
>       Zeigen Sie: die Funktion f : [mm]\IR \to \IR[/mm] , f(x) :=
> xg(x) ist in 0 stetig.

mach dir mal anschaulich klar, was diese aussage bedeutet. nimm zb. [mm] $g(x)=\cos(x)$, [/mm] das ist eine typische beschraenkte funktion. Wie sieht dann $f(x)=x g(x)$ aus? Wie MUSS der funktionswert in 0 sein? die stetigkeit bekommst du dann durch einfache abschaetzung des betrages [mm] $|f(x)|\le\ldots$. [/mm]

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]