Stetigkeit f(x) = x^sqrt(x) < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei $f(x) = [mm] x^{\sqrt{x}}$ [/mm] für $x > 0$ und $f(0) = 1$.
(a) Ist die Funktion $f$ auf dem Intervall $[0, + [mm] \infinity)$ [/mm] stetig?
(b) Bestimmen Sie den kleinsten und den größten Wert der Funktion $f$ auf dem Intervall $[0, 1]$. |
Hallo zusammen,
ich arbeite gerade ein paar Aufgaben durch um für meine anstehende Klausur zu lernen. Mit der Aufgabe in diesem Thread komme ich leider nicht wirklich weiter.
Meine Ideen soweit:
(a) Ich weiß, dass ich zeigen muss dass $|x-y| < [mm] \delta \Rightarrow [/mm] |f(x) - f(y)| < [mm] \epsilon$ [/mm] für alle [mm] $\delta, \epsilon [/mm] > 0$. Also fange ich an mit:
$|f(x) - f(y)| = [mm] |x^{\sqrt{x}} [/mm] - [mm] y^{\sqrt{y}}|$ [/mm] und dann habe ich ein paar Umformungen ausprobiert, die mich auch nicht viel weiter gebracht haben..
(a.1.) Dreiecksungleichung: [mm] $|x^{\sqrt{x}} [/mm] - [mm] y^{\sqrt{y}}| \leq |x^{\sqrt{x}}| [/mm] + |- [mm] y^{\sqrt{y}}| [/mm] = [mm] |x^{\sqrt{x}}| [/mm] + [mm] |y^{\sqrt{y}}|$
[/mm]
(a.2.) 3. Binom: wieder rausgenommen, da rechnerisch falsch
Ist das überhaupt der richtige Weg sowas zu zeigen?..
(b) Ich sehe, dass $f(0) = 1$ und $f(1) = 1$, also könnte ich jetzt doch mal schauen wie es mit der Steigung aussieht. Dazu könnte ich $f(x) = [mm] e^{ln(x^{x^{0.5}})} [/mm] = [mm] e^{x^{0.5} \ln(x)}$ [/mm] verwenden und das ganze Ableiten (was aber sehr unschön aussieht), wäre das der richtige Weg?
Ich bin für jeden Hinweis dankbar! :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:40 Sa 15.02.2014 | Autor: | Sax |
Hi,
> Sei [mm]f(x) = x^{\sqrt{x}}[/mm] für [mm]x > 0[/mm] und [mm]f(0) = 1[/mm].
> (a) Ist
> die Funktion [mm]f[/mm] auf dem Intervall [mm][0, + \infinity)[/mm] stetig?
> (b) Bestimmen Sie den kleinsten und den größten Wert der
> Funktion [mm]f[/mm] auf dem Intervall [mm][0, 1][/mm].
> Hallo zusammen,
>
> ich arbeite gerade ein paar Aufgaben durch um für meine
> anstehende Klausur zu lernen. Mit der Aufgabe in diesem
> Thread komme ich leider nicht wirklich weiter.
>
> Meine Ideen soweit:
> (a) Ich weiß, dass ich zeigen muss dass [mm]|x-y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon[/mm]
> für alle [mm]\delta, \epsilon > 0[/mm].
Deine Quantoren stimmen so nicht. Zu zeigen wäre, dass es für alle $ [mm] \varepsilon [/mm] >0 $ ein $ [mm] \delta [/mm] >0 $ gibt, so dass die Implikation richtig ist.
Hier ist aber die Umformung, die du für Teil b) hingeschrieben hast, erfolgversprechender: [mm] f(x)=e^{\sqrt{x}*ln(x)}, [/mm] der Grenzwert des Exponenten kann mit l'Hospital ermittelt werden und die e-Funktion ist stetig.
>
> (b) Ich sehe, dass [mm]f(0) = 1[/mm] und [mm]f(1) = 1[/mm], also könnte ich
> jetzt doch mal schauen wie es mit der Steigung aussieht.
> Dazu könnte ich [mm]f(x) = e^{ln(x^{x^{0.5}})} = e^{x^{0.5} \ln(x)}[/mm]
> verwenden und das ganze Ableiten (was aber sehr unschön
> aussieht), wäre das der richtige Weg?
Dein Sinn für Ästhetik in allen Ehren, aber ja, genau das ist der richtige Weg.
Gruß Sax.
|
|
|
|