www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit f(x) = Wurzel x
Stetigkeit f(x) = Wurzel x < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit f(x) = Wurzel x: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:17 So 01.08.2010
Autor: fabian.j

Aufgabe
Zeigen Sie die Stetigkeit von [mm] f(x)=\wurzel{x}, f:\IR+\to\IR [/mm]

Hallo,
macht man das dann so:

Sei [mm] \varepsilon [/mm] beliebig.Sei ausserdem [mm] \delta [/mm] = [mm] \wurzel x_{0} [/mm] * [mm] \varepsilon [/mm] , dann gilt:

| f(x) - [mm] f(x_{0}) [/mm] | = [mm] |\wurzel [/mm] x - [mm] \wurzel x_{0} [/mm] | = [mm] |\bruch{x - x_{0}}{\wurzel x + \wurzel x_{0}}| [/mm] < | [mm] \bruch{\delta}{\wurzel x + \wurzel x_{0}} [/mm] | < | [mm] \bruch{\delta}{\wurzel x_{0}} [/mm] |  [mm] \le \varepsilon [/mm]

Wobei ich das, was ich im ersten Satz beim [mm] \delta [/mm] eingetragen hab (blau) eigentlich erst am ende weiß.

Und wie müsste ich die gleichmässige Stetigkeit zeigen, da darf [mm] \varepsilon [/mm] doch nicht mehr von [mm] x_{0} [/mm] bzw nur noch von [mm] \delta [/mm] abhängen, oder?

        
Bezug
Stetigkeit f(x) = Wurzel x: Antwort
Status: (Antwort) fertig Status 
Datum: 23:02 So 01.08.2010
Autor: Gonozal_IX

Huhu,

> Wobei ich das, was ich im ersten Satz beim [mm]\delta[/mm]
> eingetragen hab (blau) eigentlich erst am ende weiß.

Korrekt. Man guckt sich erst an, wie man was durch [mm] \delta [/mm] abschätzen kann und wählt dann [mm] \delta [/mm] geeignet.
Wobei dein Beweis allerdings nur für [mm] $x_0 \not= [/mm] 0$ gilt, aber das sollte kein Problem darstellen :-)
  

> Und wie müsste ich die gleichmässige Stetigkeit zeigen,
> da darf [mm]\varepsilon[/mm] doch nicht mehr von [mm]x_{0}[/mm] bzw nur noch
> von [mm]\delta[/mm] abhängen, oder?

Umgekehrt: Deine Wahl von [mm] \delta [/mm] darf nicht von [mm] x_0 [/mm] abhängen, sondern nur von [mm] \varepsilon. [/mm]
Das [mm] \varepsilon [/mm] wird dir ja "gegeben" und du musst ein [mm] \delta [/mm] finden, so dass $|f(x) - [mm] f(x_0)| [/mm] < [mm] \varepsilon$ [/mm] für $|x - [mm] x_0| [/mm] < [mm] \delta$ [/mm]
Insofern musst du dann eine Abschätzung finden, so dass deine Ungleichungskette auch für [mm] \delta [/mm] gilt, was nicht von [mm] x_0 [/mm] abhängt.

MFG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]