www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Fehlende Funktionswerte berech
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:28 So 08.05.2005
Autor: michagm1

Hallo mir ist nicht klar, wie ich den Ansatz bei der Ermittlung folgender Unbekannter angehen soll.

Seien b,c Element R. Die Funktion f:R=>R sei stückweise definiert durch:
f(x):
-6x+1 für x <-2
x*x + bx + c für -2 <=x<4
4x + 3 für 4<=x

Aufgabe: b und c sollen so berechnet werden, dass R auf ganz f stetig ist. Kann es sein, dass es hier mehrere Lösungen gibt?

Ich bin bislang auf folgendes gekommen:
für x = 3
3*3 + 3b + c < 19
3b + c < 10
c < 10 - 3b

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Stetigkeit einer Funktion: Allgemeine Erläuterung
Status: (Antwort) fertig Status 
Datum: 20:04 So 08.05.2005
Autor: Loddar

Hallo michagm1,

[willkommenmr] !!


> Seien b,c Element R. Die Funktion f:R=>R sei stückweise
> definiert durch:
> f(x):
> -6x+1 für x <-2
> x*x + bx + c für -2 <=x<4
> 4x + 3 für 4<=x
>  
> Aufgabe: b und c sollen so berechnet werden, dass R auf
> ganz f stetig ist. Kann es sein, dass es hier mehrere
> Lösungen gibt?
>  
> Ich bin bislang auf folgendes gekommen:
> für x = 3
> 3*3 + 3b + c < 19
> 3b + c < 10
> c < 10 - 3b

Wie kommst Du denn gerade auf den x-Wert x=3 ?? [haee]

In den jeweiligen Bereichen der stückweisen Funktionen, d.h. innerhalb der vorgegebenen Intervalle sind die Funktionen ja stetig, da sie dort aus ganz-rationalen Funktionsteilen bestehen.


Kritisch sind hier die jeweiligen Intervallgrenzen!
Das wären also [mm] $x_1 [/mm] \ = \ -2$ sowie [mm] $x_2\ [/mm] = \ 4$.


Damit eine Funktion an der Stelle [mm] $x_0$ [/mm] stetig ist, muß gelten:

[mm] [center]$\limes_{x \rightarrow x_0-} [/mm] f(x) \ = \ [mm] \limes_{x \rightarrow x_0+} [/mm] f(x) \ = \ [mm] f(x_0)$[/center] [/mm]

In Worten: Linksseitiger und rechtsseitiger Grenzwert müssen übereinstimmen und auch gleich sein dem entsprechenden Funktionswert.


Ich zeige Dir das mal an der Stelle [mm] $x_1 [/mm] \ = \ -2$


Linksseitiger Grenzwert:
[mm] $\limes_{x \rightarrow -2 -} [/mm] f(x) \ = \ [mm] \limes_{x \rightarrow -2 -} [/mm] (-6x+1) \ = \ -6*(-2)+1 \ = \ 13$

Rechtsseitiger Grenzwert:
[mm] $\limes_{x \rightarrow -2 +} [/mm] f(x) \ = \ [mm] \limes_{x \rightarrow -2 +} \left( x^2 + b*x + c\right) [/mm] \ = \ [mm] (-2)^2 [/mm] + b*(-2) + c \ = \ 4 - 2b + c \ = \ f(-2)$


[mm] $\Rightarrow$ [/mm]   $4 - 2b + c \ = \ 13$


Genauso mußt du nun an der Stelle [mm] $x_2 [/mm] \ = \ +4$ vorgehen und erhältst dann ein Gleichungssystem mit 2 unbekannten und 2 Gleichungen, das Du dann nach $b$ und $c$ auflösen kannst.


Versuche das doch mal, und wenn Du noch Fragen hast, melde Dich einfach nochmal ...

Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]