Stetigkeit einer Abbildung < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Der reell projektive Raum [mm] RP^{n} [/mm] ist die Menge aller Geraden im Euklidischen [mm] R^{n+1} [/mm] ( d.h alle Elemente von [mm] RP^{n} [/mm] haben die Form [mm] \IR [/mm] u mit einem nur bis auf Vielfache bestimmten Vektor) versehen mit der Metrik [mm] d(\IR [/mm] u, [mm] \IR [/mm] v) = [mm] \arccos(\bruch{| |}{|u|*|v|})
[/mm]
Beweise dass die Abbildung f: U [mm] \rightarrow R^2 [/mm] stetig ist die eine Gerade [mm] \IR(x,y,z) [/mm] z>0 auf den Punkt( [mm] \bruch{x}{|(x,y,z)|-z}, \bruch{y}{|(x,y,z)|-z} [/mm] ) der Euklidischen Ebene [mm] R^2 [/mm] abbildet.
|
Guten tach
Die Stetigkeit wollte ich mit dem [mm] \varepsilon [/mm] - [mm] \delta [/mm] Kriterium nachweisen. Also sei [mm] u=\IR(x_{1},y_{1},z_{1}) [/mm] und [mm] v=\IR(x_{2},y_{2},z_{2}) [/mm] und sei [mm] d(u,v)\le \varepsilon. [/mm] Nun muss ich ja die linke seite noch beweisen. Nun ist die Frage wie ich das mache. Muss ich jetzt mit dem angegebenen Punkt die gerade durch den Punkt und den nullpunkt aufmachen um ihn so in den Projektiven Raum zu bekommen weil ich ja sonst die metrik nicht anwenden kann. Wie beweise ich den oberen Sachverhalt sonst?
danke für die Antwort
|
|
|
|
im Bildraum [mm] R^2 [/mm] gilt die euklidische Metrik, der Abstand der Bildpunkte der beiden projektiven Geraden muss also mit dieser berechnet werden!
|
|
|
|