www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit der Komponente
Stetigkeit der Komponente < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit der Komponente: "Tipp"
Status: (Frage) beantwortet Status 
Datum: 15:27 Mi 08.06.2016
Autor: Ardbeg

Aufgabe
Warum folgt aus partieller Differenzierbarkeit die Stetigkeit der Komponente, aber nicht die Umkehrung?

Hallo Freunde,

ich wollte mir diese Thematik etwas deutlicher machen, da es mir noch nicht so klar ist.
Also die Definition von partieller Differenzierbarkeit lautet:

Sei n [mm] \in \IN [/mm] und U [mm] \subseteq R^{n}. [/mm] Eine Funktion f: U [mm] \to \IR [/mm] heißt partiell differenzierbar, wenn für t := [mm] (t_{1};t_{2}; \ldots ;t_{i}) \in [/mm] U mit 1 [mm] \le [/mm] i [mm] \le [/mm] n der Grenzwert:

[mm] \bruch{\partial f}{\partial x_i}(t):=\limes_{h\rightarrow 0} \bruch{f(t_{1}; \ldots ; t_{i} + h; \ldots ; t_{n})-f(t_{1}; \ldots ; t_{i} ; \ldots ; t_{n})}{h} [/mm]

existiert.

Und die Definition für Stetigkeit der Komponenten lautet:
Sei n [mm] \in \IN [/mm] und U [mm] \subseteq R^{n}. [/mm] Eine Funktion f: U [mm] \to \IR [/mm] heißt stetig in jeder Komponente, wenn für x := [mm] (x_{1};x_{2}; \ldots ;x_{n}) \in [/mm] U und alle 1 [mm] \le [/mm] i [mm] \le [/mm] n die Funktion:

[mm] g_{i}(t):=f(x+t*e_{i})=f(x_{1}; \ldots ;x_{i-1}; x_{i}+t; \ldots ;x_{i+1}; \ldots ;x_{n}) [/mm]

stetig in t=0 ist [mm] (e_{i}=(0; \ldots [/mm] ;1; [mm] \ldots [/mm] ;0) i-ter Einheitsvektor).

Doch wie kommt man denn dann auf die Folgerung? Ich finde dafür keine Argumentation.

        
Bezug
Stetigkeit der Komponente: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mi 08.06.2016
Autor: fred97


> Warum folgt aus partieller Differenzierbarkeit die
> Stetigkeit der Komponente, aber nicht die Umkehrung?
>  Hallo Freunde,
>  
> ich wollte mir diese Thematik etwas deutlicher machen, da
> es mir noch nicht so klar ist.
> Also die Definition von partieller Differenzierbarkeit
> lautet:
>  
> Sei n [mm]\in \IN[/mm] und U [mm]\subseteq R^{n}.[/mm] Eine Funktion f: U [mm]\to \IR[/mm]
> heißt partiell differenzierbar, wenn für t :=
> [mm](t_{1};t_{2}; \ldots ;t_{i}) \in[/mm] U mit 1 [mm]\le[/mm] i [mm]\le[/mm] n der
> Grenzwert:
>  
> [mm]\bruch{\partial f}{\partial x_i}(t):=\limes_{h\rightarrow 0} \bruch{f(t_{1}; \ldots ; t_{i} + h; \ldots ; t_{n})-f(t_{1}; \ldots ; t_{i} ; \ldots ; t_{n})}{h}[/mm]
>  
> existiert.
>
> Und die Definition für Stetigkeit der Komponenten lautet:
>  Sei n [mm]\in \IN[/mm] und U [mm]\subseteq R^{n}.[/mm] Eine Funktion f: U
> [mm]\to \IR[/mm] heißt stetig in jeder Komponente, wenn für x :=
> [mm](x_{1};x_{2}; \ldots ;x_{n}) \in[/mm] U und alle 1 [mm]\le[/mm] i [mm]\le[/mm] n
> die Funktion:
>  
> [mm]g_{i}(t):=f(x+t*e_{i})=f(x_{1}; \ldots ;x_{i-1}; x_{i}+t; \ldots ;x_{i+1}; \ldots ;x_{n})[/mm]
>  
> stetig in t=0 ist [mm](e_{i}=(0; \ldots[/mm] ;1; [mm]\ldots[/mm] ;0) i-ter
> Einheitsvektor).
>  
> Doch wie kommt man denn dann auf die Folgerung? Ich finde
> dafür keine Argumentation.

  [mm] $g_i(h)-g_i(0)=f(t_{1}; \ldots [/mm] ; [mm] t_{i} [/mm] + h; [mm] \ldots [/mm] ; [mm] t_{n})-f(t_{1}; \ldots [/mm] ; [mm] t_{i} [/mm] ; [mm] \ldots [/mm] ; [mm] t_{n})=\bruch{f(t_{1}; \ldots ; t_{i} + h; \ldots ; t_{n})-f(t_{1}; \ldots ; t_{i} ; \ldots ; t_{n})}{h}*h \to \bruch{\partial f}{\partial x_i}(t)*0=0$ [/mm]  für $ h [mm] \to [/mm] 0$

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]