www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Stetigkeit Projketion
Stetigkeit Projketion < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Projketion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Fr 28.10.2011
Autor: marianne88

Liebes Forum

Folgendes bereitet mir leider Schwierigkeiten:

Sei $\ [mm] f_k: [/mm] X [mm] \to \IR [/mm] $ die Koordinatentransformation auf die $\ k$-te Koordinate, wobei $\ X $ ein endlichdimensionaler Vektorraum ist, also:

$\ [mm] f_k(x) [/mm] := [mm] x_k [/mm] $, wenn $\ x = [mm] \summe_{j=1}^k x_j e_j [/mm] $ wobei $\ [mm] e_j [/mm] $ eine normierte Basis ist, also $\ [mm] \parallel e_j \parallel [/mm] = 1 $.

wieso ist diese Abbildung stetig? Linearität ist klar, daher wollte ich zeigen, dass sie beschränkt ist:

$\ [mm] |f_k(x)| [/mm] = [mm] |x_k| [/mm] $ dies würde ich gerne abschätzen mittels $\ [mm] |x_k| \le \parallel [/mm] x [mm] \parallel [/mm] $. Aber wieso gilt dies?

Danke

Marianne88

        
Bezug
Stetigkeit Projketion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:48 Fr 28.10.2011
Autor: Blech


> $ \ [mm] |f_k(x)| [/mm] = [mm] |x_k| [/mm] $ dies würde ich gerne abschätzen mittels $ \ [mm] |x_k| \le \parallel [/mm] x [mm] \parallel [/mm] $. Aber wieso gilt dies?

Es tut's nicht.

Such Dir eine Basis im [mm] $\IR^2$ [/mm] mit einem stumpfen Winkel zwischen den Vektoren.


> $ \ [mm] f_k(x) [/mm] := [mm] x_k [/mm] $

endlich-dimensionaler, linearer Operator, also stetig, oder?


ciao
Stefan

Bezug
        
Bezug
Stetigkeit Projketion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 Fr 28.10.2011
Autor: fred97

Es gilt folgender Satz:

Ist X ein normierter Raum mit Norm ||*|| und sind [mm] b_1,..., b_n [/mm] linear unabhängige Vektoren aus X, so gibt es ein c>0 mit:

         [mm] |x_1|+...+|x_n| \le [/mm] c [mm] ||x_1b_1+...+x_nb_n|| [/mm]

für alle Skalare [mm] x_1,...,x_n. [/mm]

Vielleicht hattet Ihr diesen Satz. Wenn nicht, so findest Du in in jedem Funktionalanalysis-Buch

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]