www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Stetigkeit Integral
Stetigkeit Integral < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:46 Mo 09.06.2008
Autor: He_noch

Hallo!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich habe ein Lebesgue-Integral einer stetigen Funktion.
Ist das Integral (bzw. die Stammfunktion) stetig?

Bei "normales" Integralen ist das ja so, oder?

Danke für die Hilfe

Gruß He_noch

        
Bezug
Stetigkeit Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:12 Mo 09.06.2008
Autor: fred97

stetige Funktionen sind Riemannintegrierbar,  Riemannint. Fktn. sind Lebesgueint. und R-Integral. = L-Integral.

Hilft Dir das?

FRED

Bezug
                
Bezug
Stetigkeit Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:39 Mo 09.06.2008
Autor: He_noch


> stetige Funktionen sind Riemannintegrierbar,  Riemannint.
> Fktn. sind Lebesgueint. und R-Integral. = L-Integral.
>  
> Hilft Dir das?

Mein Konkretes Problem ist:
Ich möchte wissen, ob G(s) = [mm] \integral_{0}^{\infty}{e^{-sx} dF(x)} [/mm] stetig ist.
Nach deinen Worten weiß ich jetzt, da [mm] e^{-sx} [/mm] stetig ist, dass das Integral existiert und mit dem entsprechenden Riemann-Integral übereinstimmt, d.h, dass eine Stammfunktion existiert.
Nur, weiß ich jetzt auch, dass die Stammfunktion stetig ist?

Danke für die Hilfe

Gruß He_noch

Bezug
                        
Bezug
Stetigkeit Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 11:03 Mo 09.06.2008
Autor: fred97

Moment, Moment.

1. Meine Antwort bezog sich auf eine Integrationsbereich der Form [a,b].

2. Was ist F ? Eigenschaften..... ?

3. Ist Dei Integral ein uneigentliches Riemann-Stieltjes Integral ? oder ein Lebesgue-Integral oder...........................?

4. Der Begriff " Stammfunktion"  impliziert doch schon die Differenzierbarkeit. Oder meinst Du etwas anderes ?

FRED

Bezug
                                
Bezug
Stetigkeit Integral: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:21 Mo 09.06.2008
Autor: He_noch

Ohh....
Also:
1. F soll irgendeine Verteilungsfunktion sein.

> 3. Ist Dei Integral ein uneigentliches Riemann-Stieltjes
> Integral ? oder ein Lebesgue-Integral
> oder...........................?

2. Mein integral ist [mm] \integral_{0}^{\infty}{e^{-sx} dF(x)}. [/mm]
Mehr weiß ich nicht und ich kenn leider die Unterschiede der von dir genannten Integrale nicht, aber bei der Aufgabe steht nichts dabei, um was für eine "Integralart" es sich handeln soll.

3. Jetzt wird da weiter behauptet, dass die Funktion [mm] G(s)=\integral_{0}^{\infty}{e^{-sx} dF(x)} [/mm]  stetig sei und ich frage mich, warum.

Sorry, falls ich mich bis jetzt missverständlich ausgedrückt habe, aber die ganzen Ausdrücke sind mir ein wenig fremd...

Danke für deine Mühe!

Gruß
He_noch

Bezug
                                        
Bezug
Stetigkeit Integral: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:21 Mi 11.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Stetigkeit Integral: ähnliche Frage
Status: (Frage) beantwortet Status 
Datum: 13:38 Sa 12.07.2008
Autor: ferdi

Hi, ich habe ein ganz ähnliches Problem. In meinem Fall habe ich eine Funktion [mm] \psi [/mm] (x, t), die stetig und beschränkt in t ist. Jetzt sei [mm] \lambda_F(t) [/mm] = [mm] \integral \psi(x, [/mm] t) dF(x). F ist dabei eine Verteilungsfunktion, es handelt sich also sozusagen um ein Riemann-Stieltjes Integral. Ich möchte nun wissen, warum [mm] \lambda_F(t) [/mm] wieder stetig ist.

Allgemeinere Frage:
Unter welcher Voraussetzung ist das integral über eine stetige Funktion wieder stetig (nicht nur bei RS-Integralen)??


Bezug
                
Bezug
Stetigkeit Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 Do 17.07.2008
Autor: Merle23

Schau mal hier, da ist es genau erklärt.

[]Wiki-Link.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]