www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Stetigkeit, Grenzfunktion
Stetigkeit, Grenzfunktion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit, Grenzfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Mi 04.04.2012
Autor: Trolli

Aufgabe
Es sei [mm] $f_n:[0,1]\rightarrow\IR, x\mapsto\begin{cases} a(1-nx), & \mbox{für } 0\le x\le\frac{1}{n} \\ 0, & \mbox{sonst} \end{cases}$ [/mm]
[mm] $a\in\IR, [/mm] a>0, [mm] n\in\IN$ [/mm]

1) Zeigen Sie, dass [mm] $f_n$ [/mm] für jedes [mm] $n\in\IN$ [/mm] stetig ist.
2) Wie lautet die (punktweise) Grenzfunktion $f$ der Folge [mm] $(f_n)_{n\in\IN}$? [/mm] Ist $f$ ebenfalls stetig?

Hallo,

ich bin leider jetzt schon einige Zeit krank und konnte nicht zu meinen Vorlesungen :(  Deshalb habe ich ein paar Fragen zu der obigen Aufgabe.
Habe leider zurzeit auch keine passenden Bücher hier.

Zeige ich bei 1) die Stetigkeit mit dem Epsilon-Delta Kriterium? Und wie lautet die Funktion mit der ich dann bei 1) und 2) arbeite? Nehme ich [mm] $f_n(x)=a(1-nx)$ [/mm] oder muss ich noch was ändern/beachten?

Schonmal vielen Dank für Hilfe/Tipps.

        
Bezug
Stetigkeit, Grenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Mi 04.04.2012
Autor: fred97


> Es sei [mm]f_n:[0,1]\rightarrow\IR, x\mapsto\begin{cases} a(1-nx), & \mbox{für } 0\le x\le\frac{1}{n} \\ 0, & \mbox{sonst} \end{cases}[/mm]
>  
> [mm]a\in\IR, a>0, n\in\IN[/mm]
>  
> 1) Zeigen Sie, dass [mm]f_n[/mm] für jedes [mm]n\in\IN[/mm] stetig ist.
>  2) Wie lautet die (punktweise) Grenzfunktion [mm]f[/mm] der Folge
> [mm](f_n)_{n\in\IN}[/mm]? Ist [mm]f[/mm] ebenfalls stetig?
>  Hallo,
>  
> ich bin leider jetzt schon einige Zeit krank und konnte
> nicht zu meinen Vorlesungen :(  Deshalb habe ich ein paar
> Fragen zu der obigen Aufgabe.
>  Habe leider zurzeit auch keine passenden Bücher hier.
>  
> Zeige ich bei 1) die Stetigkeit mit dem Epsilon-Delta
> Kriterium? Und wie lautet die Funktion mit der ich dann bei
> 1) und 2) arbeite? Nehme ich [mm]f_n(x)=a(1-nx)[/mm] oder muss ich
> noch was ändern/beachten?

Zu 1) Du mußt [mm] f_n [/mm] so nehmen, wie oben definiert ! Zeichne Dir mal [mm] f_n [/mm] auf.

Zeigen mußt Du nur, dass [mm] f_n [/mm] in x=1/n stetig ist.

Zu 2) Für jedes x [mm] \in [/mm] [0,1] berechne [mm] f(x):=\limes_{n\rightarrow\infty}f_n(x) [/mm]

FRED

>  
> Schonmal vielen Dank für Hilfe/Tipps.


Bezug
                
Bezug
Stetigkeit, Grenzfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Mi 04.04.2012
Autor: Trolli


> Zu 1) Du mußt [mm]f_n[/mm] so nehmen, wie oben definiert ! Zeichne
> Dir mal [mm]f_n[/mm] auf.
>  
> Zeigen mußt Du nur, dass [mm]f_n[/mm] in x=1/n stetig ist.
>  

Wenn a=1
[mm] f_1(x)=1-x [/mm]
[mm] f_2(x)=1-2x [/mm]
[mm] f_3(x)=1-3x [/mm]
usw.
Es dreht sich um die 1 und nähert sich immer weiter der y-Achse.

Wenn [mm] x=\frac{1}{n} [/mm]
[mm] $f(x)=a(1-nx)=a(1-n\frac{1}{n})=0 [/mm]

[mm] $\Rightarrow |f_n(x)-f(x)|=|a(1-nx)-0|=...$ [/mm]

Ist es so korrekt? Wie muss ich weitermachen?



> Zu 2) Für jedes x [mm]\in[/mm] [0,1] berechne
> [mm]f(x):=\limes_{n\rightarrow\infty}f_n(x)[/mm]
>  

Der Limes von $a(1-nx)$ müsste ja [mm] $-\infty$ [/mm] sein, da [mm] $x\in[0,1]$ [/mm] ist und damit die Klammer immer weiter ins negative geht. Ich weiß nur leider nicht wie ich es ganau zeigen kann :(

Bezug
                        
Bezug
Stetigkeit, Grenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Mi 04.04.2012
Autor: leduart

Hallo
du hast die 2 Teile nicht richtig getrennt. für x>1/n ist doch f=0 nur für x<1/n ist es f=a(1-n*x)
was ist f(0), wohin konvergiert es also punktweise?
was ei x=1/n? x=1/2n?
Gruss leduart

Bezug
                                
Bezug
Stetigkeit, Grenzfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Mi 04.04.2012
Autor: Trolli


> Hallo
>  du hast die 2 Teile nicht richtig getrennt. für x>1/n ist
> doch f=0 nur für x<1/n ist es f=a(1-n*x)

Ja, für x <= 1/n ist f(x)=a(1-nx). Was stimmt denn da nicht?

>  was ist f(0), wohin konvergiert es also punktweise?

f(0)=a

Bedeutet dass, das die Folge nicht punktweise konvergiert da f(0)=a ist und die restlichen Funktionswerte im Intervall [0,1] ungleich a sind?
Irgendwie weiß ich grad überhaupt nicht was ich machen soll. Hab hier leider grad nichts zum nachlesen wie man vorgeht :(


>  was ei x=1/n? x=1/2n?

Was genau meinst du damit?

Bezug
                                        
Bezug
Stetigkeit, Grenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Mi 04.04.2012
Autor: leduart

Hallo
am Punkt x=0 konvergiert [mm] f_n [/mm] punkt weise gegen a
a, Punkt zB. 0.001 konvergiert [mm] f_n(0.001) [/mm] gegen ? für alle x>0 gilt also [mm] f_n(x)konvergiert [/mm] gegen f(x)=?
dann hast du die Grenzfkt.
jetzt die Frage ist f(x) stetig und wo?
Gruss leduart

Bezug
                                                
Bezug
Stetigkeit, Grenzfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:22 Mi 04.04.2012
Autor: Trolli


> Hallo
>  am Punkt x=0 konvergiert [mm]f_n[/mm] punkt weise gegen a
>  a, Punkt zB. 0.001 konvergiert [mm]f_n(0.001)[/mm] gegen ? für
> alle x>0 gilt also [mm]f_n(x)konvergiert[/mm] gegen f(x)=?
>  dann hast du die Grenzfkt.
>  jetzt die Frage ist f(x) stetig und wo?
>  Gruss leduart

Für x=0
[mm] \limes_{n\rightarrow\infty}f_n(x)=a [/mm]

Für [mm] 0 [mm] \limes_{n\rightarrow\infty}f_n(x)=-\infty [/mm]

Für [mm] x=\frac{1}{n} [/mm]
[mm] \limes_{n\rightarrow\infty}f_n(x)=0 [/mm]

Meinst du es so? Wie muss ich weiter vorgehen?

Bezug
                                                        
Bezug
Stetigkeit, Grenzfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 Mi 04.04.2012
Autor: leduart

Hallo
wie kommst du auf das [mm] -\infty [/mm] für x<1/n
Gruss leduart



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]