www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Stetigkeit
Stetigkeit < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 Mo 14.02.2011
Autor: David90

Aufgabe
Bestimmen Sie [mm] a\in\IR, [/mm] so dass die Funktion g(x) stetig ist. Für [mm] x\not=0 [/mm] gilt [mm] \bruch{sin((\pi/5)*x)}{x} [/mm] und für x=0 gilt a.

Hallo,
ich versuch mich grad an ein paar Klausuraufgaben und scheiter immer wieder an der sch*** Stetigkeit -.- Also ich weiß dass der linksseitige und der rechtsseitige Limes gleich sein müssen, aber viel mehr auch nicht. Kann mir mal jemand nen Ansatz erklären?
Danke schon mal im Voraus:)
Gruß David

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 Mo 14.02.2011
Autor: kamaleonti

Hi,
> Bestimmen Sie [mm]a\in\IR,[/mm] so dass die Funktion g(x) stetig
> ist. Für [mm]x\not=0[/mm] gilt [mm]\bruch{sin((\pi/5)*x)}{x}[/mm] und für
> x=0 gilt a.

Hi,
du kannst deine Funktion besser aufschreiben (Formeleditor verwenden ;-)):
[mm] f(x)=\begin{cases}\bruch{sin((\pi/5)*x)}{x}, & x\not=0 \\ a, & x=0 \end{cases} [/mm]

>  Hallo,
>  ich versuch mich grad an ein paar Klausuraufgaben und
> scheiter immer wieder an der sch*** Stetigkeit -.- Also ich
> weiß dass der linksseitige und der rechtsseitige Limes
> gleich sein müssen, aber viel mehr auch nicht.

Das ist richtig. Setze also [mm] a=\lim_{x\to0}\bruch{sin((\pi/5)*x)}{x}. [/mm] Dieser Grenzwert existiert nur, wenn rechts und linksseitiger Grenzwert übereinstimmen (das ist hier der Fall). Bei der Berechnung des Grenzwerts kannst du L'Hospital anwenden.

Gruß

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:01 Di 15.02.2011
Autor: fred97

Für $c [mm] \ne [/mm] 0$ ist

         [mm] $\bruch{sin(cx)}{x}= c*\bruch{sin(cx)}{cx}$. [/mm]

Der Grenzwert

             [mm] \limes_{t\rightarrow\ 0}\bruch{sin(t)}{t} [/mm]

dürfte bekannt sein.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]