www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:37 Mi 26.01.2011
Autor: yuppi

Hallo Zusammen und zwar versuche ich zu zeigen das die Funktion in (0,0) stetig ist.


f(x,y)= [mm] \bruch{x^4+y^4}{(x^2+y^2)^\bruch{3}{2}} [/mm]

Außerhalb von  also  ungleich (0,0) ist das ja klar. Eine Kompisition stetiger Abildungen ist stetig. Und der Nenner wird ebenfalls nicht 0 da ungleich (0,0) nur betrachtet wird. Wäre super nett wenn ich das hier mit jemanden machen könnte. Habe gar kein plan wie man da rangeht.

Gruß
yuppi

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:48 Mi 26.01.2011
Autor: schachuzipus

Hallo yuppi,


> Hallo Zusammen und zwar versuche ich zu zeigen das die
> Funktion in (0,0) stetig ist.
>  
>
> f(x,y)= [mm]\bruch{x^4+y^4}{(x^2+y^2)^\bruch{3}{2}}[/mm]
>  
> Außerhalb von  also  ungleich (0,0) ist das ja klar. Eine
> Kompisition stetiger Abildungen ist stetig. [ok] Und der Nenner
> wird ebenfalls nicht 0 da ungleich (0,0) nur betrachtet
> wird. Wäre super nett wenn ich das hier mit jemanden
> machen könnte. Habe gar kein plan wie man da rangeht.

Probier's mit Polarkoordinaten:

[mm]x=r\cdot{}\cos(\varphi)[/mm]

[mm]y=r\cdot{}\sin(\varphi)[/mm] ...

Also [mm]f(r,\varphi)=...[/mm]

Lasse dann [mm]r\to 0[/mm] gehen und schaue, ob sich unabh. vom Winkel [mm]\varphi[/mm] ein (und derselbe) Grenzwert ergibt.

>  
> Gruß
>  yuppi

LG

schachuzipus


Bezug
                
Bezug
Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Mi 26.01.2011
Autor: yuppi

Polarkoordinaten sind mir leider fremd... hast du vielleicht einen anderen Tipp, wie man das noch machen  könnte ?

Gruß

Bezug
                        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Mi 26.01.2011
Autor: Marcel

Hallo,

> Polarkoordinaten sind mir leider fremd... hast du
> vielleicht einen anderen Tipp, wie man das noch machen  
> könnte ?

der Ausdruck

$$f(x,y)= [mm] \bruch{x^4+y^4}{(x^2+y^2)^\bruch{3}{2}}$$ [/mm]
ist für [mm] $x=y=0\,$ [/mm] nicht definiert. Aber was man sich fragen kann, ist, ob man diese (z.B. auf [mm] $\IR^2\setminus\{(0,0)\}$ [/mm] definierte) Funktion stetig in [mm] $(0,0)\,$ [/mm] ergänzen könnte. Ich behaupte, dass das mit [mm] $f(0,0):=0\,$ [/mm] geht.

Wegen
[mm] $$x^4+y^4 \le (x^2)^2+2x^2y^2+(y^2)^2=(x^2+y^2)^2$$ [/mm]
für alle $(x,y) [mm] \in \IR^2 \setminus \{(0,0)\}$ [/mm] folgt nämlich
[mm] $$(\star)\;\;|f(x,y)| \le \sqrt{x^2+y^2}\,,$$ [/mm]
woraus wegen der Stetigkeit der Wurzelfunktion, der Addition, der Betragsfunktion und [mm] $\sqrt{0}=0=|0|$ [/mm] die Behauptung folgt.

P.S.:
Die Stetigkeit der Betragsfunktion kann man auch weglassen, wenn man [mm] $(\star)$ [/mm] im Sinne von
$$|f(x,y)|=|f(x,y)-0| [mm] \le \sqrt{x^2+y^2}\,,$$ [/mm]
liest.

Ich selber folgere aber aus [mm] $(\star)$ [/mm] einfach
[mm] $$\lim_{(0,0) \not=(x,y) \to (0,0)}|f(x,y)|=0\,,$$ [/mm]
und die Stetigkeit der Betragsfunktion erlaubt's mir, den Limes unter den Betrag zu ziehen, woraus sich dann
[mm] $$\lim_{(0,0) \not=(x,y) \to (0,0)}f(x,y)=0$$ [/mm]
ergibt (weil glücklicherweise [mm] $|r|=0\,$ [/mm] auch $r=0$ nach sich zieht; also die Betragsfunktion nur die einzige Nullstelle in der Stelle [mm] $0\,$ [/mm] hat).

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]