www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Stetigkeit
Stetigkeit < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 17.03.2009
Autor: mimmimausi

Hallo,

hab mal ne frage.
gibt es funktionen, die differenzierbar aber nicht stetig sind?

Ich würde sagen nein, da man nur stetige funktionen ableiten kann.
richtig?

mfg

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Di 17.03.2009
Autor: pelzig

Ist eine Funktion in einem Punkt differenzierbar, dann ist sie in dem Punkt auch stetig. Das muss man halt mal beweisen.

Gruß, Robert

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Di 17.03.2009
Autor: Somebody


> Hallo,
>  
> hab mal ne frage.
>  gibt es funktionen, die differenzierbar aber nicht stetig
> sind?
>  
> Ich würde sagen nein, da man nur stetige funktionen
> ableiten kann.
>  richtig?

Dass aus Differenzierbarkeit von $f(x)$ an einer Stelle [mm] $x_0$ [/mm] auch Stetigkeit von $f$ an dieser Stelle folgt, kannst Du Dir leicht plausibel machen, indem Du

[mm]f'(x_0)=\lim_{x\rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}[/mm]

betrachtest. Differenzierbarkeit an der Stelle [mm] $x_0$ [/mm] bedeutet ja, dass dieser Grenzwert existiert. Da aber für [mm] $x\rightarrow x_0$ [/mm] der Nenner [mm] $x-x_0$ [/mm] gegen $0$ geht, ist dies nur möglich, wenn auch [mm] $f(x)-f(x_0)$ [/mm] gegen $0$ geht, was nichts anderes bedeutet, als dass [mm] $\lim_{x\rightarrow x_0}f(x)=f(x_0)$: [/mm] dass also $f$ an der Stelle an [mm] $x_0$ [/mm] stetig ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]