www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit
Stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: stetig?
Status: (Frage) beantwortet Status 
Datum: 20:25 Mo 19.05.2008
Autor: DoktorQuagga

Aufgabe
Hallo, die Aufgabenstellung lautet:
Die Funktion f: [0, 1] [mm] \mapsto [/mm] [0, 1] sei definiert durch
[mm] f(x)=\begin{cases} x, & \mbox{falls } x \in \IQ \\ 1-x, sonst \end{cases}. [/mm]
Man zeige, dass f nur an der Stelle a = 1/2 stetig ist.

Ich habe hier überhaupt keine Idee, wie ich einen Ansatz finden soll.
Kann mir jemand einen nützlichen und ausführlich erklärten Ansatz geben? (Ich bin im 1. Semester und habe nicht soviel Fachwissen ;))
Danke.

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Mo 19.05.2008
Autor: Gonozal_IX

Hallo Quagga,

es gibt ja 2 Definitionen für die Stetigkeit.
Einfach ist zu zeigen, dass f unstetig für [mm]x \not= \frac{1}{2}[/mm].
Benutze dafür die Folgenstetigkeit und definiere dir einmal eine Folge rationaler Werte und eine Folge irrationaler Werte. Was fällt dir auf?

Welche Ideen hast du für [mm] \frac{1}{2}? [/mm]

MfG,
Gono.

Bezug
        
Bezug
Stetigkeit: THX
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:33 Mo 26.05.2008
Autor: DoktorQuagga

Danke..

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]