www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit : Beweis
Status: (Frage) beantwortet Status 
Datum: 22:46 Di 14.12.2004
Autor: verwirrter

Aufgabe :
Sind die Funktionen f,g auf [a,b] definiert und stetig und stimmen in allen rationalen Punkten auf [a,b] überein, so sind sie identisch auf [a,b].

Kann mir jemand einen Ansatz geben, wie ich da ran gehen soll? Ich muss wohl irgendwie zeigen, dass wegen des Zwischenwertsatzes gilt, dass die Werte zwischen zwei nächstbeiananderliegenden rationalen Zahlen gleich sind? Wie schreibe ich das auf?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetigkeit : Ansatz
Status: (Antwort) fertig Status 
Datum: 11:58 Mi 15.12.2004
Autor: Hugo_Sanchez-Vicario

Hallo Verwirrter,

beweise das durch Widerspruch. Nimm an, es gäbe eine irrationale Zahl bei der die Funktionswerte verschieden sind. Benutze die Eigenschaft, dass [mm] \IQ [/mm] dicht in [mm] \IR [/mm] liegt. Das widerspricht der Stetigkeit.

Versuch es doch mit diesem Tip.

Hugo

PS: Mit dem Zwischenwertsatz hat das nix zu tun.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]