www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Stetigkeit nachweisen
Status: (Frage) beantwortet Status 
Datum: 13:20 Mo 30.04.2007
Autor: clwoe

Aufgabe
Die Funktion [mm] f(x,y)=\bruch{x^{2}y}{x^{4}+y^{2}} [/mm] sei für alle [mm] (x,y)\not=(0,0) [/mm] definiert und es gilt: f(0,0)=0

Die Funktion g=f(ta,tb) ist für alle [mm] (a,b)\not=(0,0) [/mm] definiert.

Zeigen Sie das die Funktion g an der Stelle t=0 stetig ist.

b) Zeigen Sie das die Funktion f an der Stelle (0,0) nicht stetig ist.

Hallo,

irgendwie weiß ich überhaupt nicht wie ich hier anfangen soll. Ich kenne zwar die Stetigkeitskriterien aber ich weiß nicht wie ich sie hier anwenden soll.

Ich komme hier überhaupt nicht weiter.

Vielleicht kann mir ja jemand helfen.

Gruß,
clwoe


        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:09 Mo 30.04.2007
Autor: Hund

Hallo,

setzt einfach x=at und y=bt ein, dann steht da:
[mm] f(at,bt)=a²t²*bt/a^{4}t^{4}+b²t² [/mm]
=a²bt/a²t²+b²
Für t gegen 0 geht das gegen 0.

f(y,y²)=1/2, also geht die Funktion für y gegen 0 in diesem Fall gegen 1/2 und nicht 0 ist daher unstetig.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]