www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Stetigkeit
Stetigkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 Di 17.01.2006
Autor: charly1607

Aufgabe 1
Die Signum- Funktion sgn: IR ---> IR ist definiert durch
[mm] sgn(x)=\begin{cases} -1, & \mbox{für } x \mbox{kleiner 0} \\ 0, & \mbox{für } x \mbox{gleich 0}\\1, & \mbox{für } x\mbox{größer 0} \end{cases} [/mm]
Untersuchen Sie diese Funktion auf Stetigkeit.

Aufgabe 2
Die Funktion f: [a,b] --> [mm] \IR [/mm] sei stetig, und es gelte f([a,b]) [mm] \subset [/mm] [a,b]. Zeigen Sie, dass f einen Fixpunkt besitzt, d.h. es gibt ein x' [mm] \in [/mm] [a,b] mit f(x')=x'.
Hinweis: Führen sie eine neue Funktion F:[a,b] -->  [mm] \IR [/mm] mit F(x):=f(x)-x ein und benutzen Sie anschließend den Zwischenwertsatz.

Aufgabe 3
Sei [mm] D\subset \IR. [/mm] Eine Funktion f: D --> [mm] \IR [/mm] heißt Lipschitz-stetig in D, wenn es eine Konstante L>0 gibt, sodass für alle x,y [mm] \in [/mm] D gilt  |f(x)-f(y) |<= L |x-y|.
Zeigen Sie: Eine Lipschitz-stetige Funktion ist gleichmäßig stetig.

Hi,
hat jemand Ahnung von der Materie, der mir hier helfen könnte. Ist echt super wichtig. Wäre nett, wenn mir jemand hilft. Danke

        
Bezug
Stetigkeit: zu Aufgabe 1
Status: (Antwort) fertig Status 
Datum: 22:12 Di 17.01.2006
Autor: Loddar

Hallo Charly!


Damit eine Funktion an der Stelle [mm] $x_0$ [/mm] stetig ist, müssen sowohl der rechtsseitige Grenzwert, der linksseitige Grenzwert soie der eigentliche Funktionswert [mm] $f(x_0)$ [/mm] übereinstimmen.

Interessant bei diesen zusammengesetzten Funktionen sind die Nahtstellen, hier also: [mm] $x_0 [/mm] \ = \ 0$ .


Wie sieht denn der linksseitige Grenzwert für diese Funktion aus? Wir nähern uns also von links, d.h. aus dem Negativen.

[mm] $\limes_{x\rightarrow 0\uparrow} [/mm] sgn(x) \ = \ [mm] \limes_{x\rightarrow 0\uparrow} [/mm] (-1) \ =\ -1$


Wie sieht es nun mit dem rechtsseitigen Grenzwert und dem Funktionswert $f(0)_$ aus?


Gruß
Loddar


Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:30 Mi 18.01.2006
Autor: MatthiasKr

Hallo Susann,

erstmal zu Aufgabe 2: die lösung findest du vermutlich in jedem ana1-buch und auch bereits mehrmals hier im forum, ganz abgesehen davon, dass die lösung eigentlich schon in der aufgabe steht... ;-).

Aufgabe3:
Schaue dir nochmal die definition der gleichmäßigen stetigkeit an:

[mm] $\forall \varepsilon>0 \exists \delta>0 \forall x_1,x_2\in [/mm] D: [mm] |x_1-x_2|<\delta \Rightarrow |f(x_1)-f(x_2)|<\varepsilon$ [/mm]

Du musst also [mm] $|f(x_1)-f(x_2)|$ [/mm] gleichmäßig abschätzen, was aber durch die lipschitz-bedingung gewährleistet wird.

Sei [mm] $\varepsilon>0$ [/mm] wie oben und $L$ die lipschitz-konstante. wählt man nun [mm] $\delta=\varepsilon/L$, [/mm] dann erfüllt dieses [mm] $\delta$ [/mm] die bedingungen der gleichmäßigen stetigkeit. qed.

VG
Matthias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]