www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Stetigkeit
Stetigkeit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit: Tipp
Status: (Frage) beantwortet Status 
Datum: 02:27 So 26.10.2014
Autor: Melisa

Aufgabe
[mm] f(x,y)=\begin{cases} \bruch{x^3-xy^2}{x^2+y^4}, & \mbox{für } (x,y) \not=\mbox{ (0,0)} \\ 0, & \mbox{für } (x,y) = \mbox{ (0,0)} \end{cases} [/mm]

Hallo an alle,
ich muss zeigen, dass f in (0,0) nicht stetig ist, aber ich stehe auf dem Schlauch. Ich habe es mit Grenzwerte probiert
wenn x = 0:
[mm] \limes_{(0,y)\rightarrow\(0,0)}f(0,y)=... [/mm]
wenn y = 0:
[mm] \limes_{(x,0)\rightarrow\(0,0)}f(x,0)=... [/mm]
und wenn x = y:
[mm] \limes_{(x,x)\rightarrow\(0,0)}f(x,x)=... [/mm]
und in allen 3 Faellen bekomme ich immer 0 (Die Grenzwerte muss verschieden sein oder nicht existieren wenn eine Fun. nicht stetig ist oder habe ich es falsch verstanden?)
Dann habe ich es auch mit Pollarkoordinaten versucht aber es funzt auch nicht.
Vielleicht koennte mir jemand einen Tipp geben, es waere sehr nett.
Vielen Dank im Voraus

        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 02:53 So 26.10.2014
Autor: YuSul

Edit:

So, ich hoffe diesmal steckt in den Folgen kein Fehler:

Betrachte die Folge [mm] $\left(\frac{1}{n},\frac{1}{\sqrt{n}}\right)\to_{n\to\infty}(0,0)$ [/mm]

und [mm] $\left(\frac{1}{n},0\right)\to_{n\to\infty}(0,0)$ [/mm]

Setzt du dies nun ein, so müsste etwas unterschiedliches rauskommen.

Bezug
                
Bezug
Stetigkeit: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:28 So 26.10.2014
Autor: Melisa

Vielen Dank an alle,
ich habe es geschafft :).  UUND alles verstanden.

LG
Melisa

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 04:24 So 26.10.2014
Autor: tobit09

Hallo Melisa!


> [mm]f(x,y)=\begin{cases} \bruch{x^3-xy^2}{x^2+y^4}, & \mbox{für } (x,y) \not=\mbox{ (0,0)} \\ 0, & \mbox{für } (x,y) = \mbox{ (0,0)} \end{cases}[/mm]


>  ich muss zeigen, dass f in (0,0) nicht stetig ist, aber
> ich stehe auf dem Schlauch.

Mit einer Betrachtung der ersten von YuSul genannte Folge kannst du bereits die Unstetigkeit von f in (0,0) nachweisen.


> Ich habe es mit Grenzwerte
> probiert
>  wenn x = 0:
>  [mm]\limes_{(0,y)\rightarrow\(0,0)}f(0,y)=...[/mm]
>  wenn y = 0:
>  [mm]\limes_{(x,0)\rightarrow\(0,0)}f(x,0)=...[/mm]
>  und wenn x = y:
>  [mm]\limes_{(x,x)\rightarrow\(0,0)}f(x,x)=...[/mm]
>  und in allen 3 Faellen bekomme ich immer 0

(Ungewöhnliche Limes-Notation z.B. mit [mm] $(x,x)\rightarrow(0,0)$ [/mm] statt [mm] $x\to0$, [/mm] aber ich verstehe, was gemeint ist.)

Hättest du irgendwo einen Limes [mm] $\not=0$ [/mm] herausbekommen (oder die Nicht-Existenz eines der Limiten), hättest du die Unstetigkeit gezeigt.

Aus Unstetigkeit in (0,0) folgt aber NICHT, dass deine obige Methoden zum Erfolg führen.


> (Die Grenzwerte
> muss verschieden sein oder nicht existieren wenn eine Fun.
> nicht stetig ist oder habe ich es falsch verstanden?)

Ja, das hast du falsch verstanden.

Unstetigkeit von f in (0,0) bedeutet, dass für IRGENDEINE gegen $(0,0)$ konvergente Folge [mm] $(x_n,y_n)_{n\in\IN}$ [/mm]

      [mm] $\lim_{n\to\infty}f(x_n,y_n)$ [/mm]

nicht existiert oder dass anderenfalls IRGENDWELCHE zwei gegen $(0,0)$ konvergente Folgen [mm] $(x_n,y_n)_{n\in\IN}$ [/mm] und [mm] $(x_n',y_n')_{n\in\IN}$ [/mm] existieren mit

      [mm] $\lim_{n\to\infty}f(x_n,y_n)\not=\lim_{n\to\infty}f(x_n',y_n')$. [/mm]


Niemand garantiert dir, dass es im Falle der Unstetigkeit solche Folgen [mm] $(x_n,y_n)$ [/mm] mit [mm] $x_n=0$ [/mm] für alle [mm] $n\in\IN$, $y_n=0$ [/mm] für alle [mm] $n\in\IN$ [/mm] oder [mm] $x_n=y_n$ [/mm] für alle [mm] $n\in\IN$ [/mm] gibt.


>  Dann habe ich es auch mit Pollarkoordinaten versucht aber
> es funzt auch nicht.

Das habe ich nicht nachgeprüft.

Selbst wenn für alle [mm] $\varphi\in\IR$ [/mm]

     [mm] $\lim_{r\to0}f(r*\sin(\varphi),r*\cos(\varphi))=(0,0)$ [/mm]

gilt, heißt dies noch lange nicht, dass die Funktion f stetig in (0,0) ist!

(Da irren selbst manche Übungsleiter.)


Viele Grüße
Tobias

Bezug
        
Bezug
Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 So 26.10.2014
Autor: Thomas_Aut

Hallo,

Eventuell ergänzend zu dem was Tobias gesagt hat:

Für deinen Versuch mit Polarkoord.

Gibt es eine stetige oder beschränkte Funktion [mm] \psi(\phi) [/mm] und eine Funktion g(r) , s.d.:
$|f(r [mm] cos(\phi),r sin(\phi))-f(0,0)| \le g(r)\psi(\phi)$ [/mm] , mit [mm] \limes_{r\rightarrow 0}g(r) [/mm] = 0 , so ist f im Nullpunkt stetig.


Gruß Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]