www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Stetige Verteilung
Stetige Verteilung < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetige Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:20 Di 27.05.2014
Autor: Musikuss

Hallo ihr!

Warum ist die Wahrscheinlichkeit bei einer stetigen Verteilung einen ganz bestimmten Wert zu treffen = 0?
Liegt das an dem e in der Funktion? Oder weil es um Zeit geht? Ich kann das irgendwie nicht richtig formulieren..


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Stetige Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Di 27.05.2014
Autor: Diophant

Hallo,

> Hallo ihr!

>

> Warum ist die Wahrscheinlichkeit bei einer stetigen
> Verteilung einen ganz bestimmten Wert zu treffen = 0?
> Liegt das an dem e in der Funktion? Oder weil es um Zeit
> geht? Ich kann das irgendwie nicht richtig formulieren..

Nein, im Prinzip liegt es am Wesen der Stetigkeit. Technisch gesehen ist es einfach:

[mm] P(X=c)=\int_c^c{f(x) dx}=0 [/mm]

Aber deine Frage zielt ja eher auf das Grundverständnis. Nehmen wir an, die Länge einer bestimmten Schraubensorte wäre bspw. normalverteilt. Jetzt entnimmt man einer Stichprobe dieser Schraubensorte eine Schraube und misst und sagt: aha, die hat genau die Soll-Länge, also den Mittelwert der Verteilung. Jetzt frage dich: wenn man die Schraube mit immer genaueren Messinstrumenten vermessen würde, was denkst du: würde es bei dieser exakten Messung bleiben oder würde nicht doch irgendwann an der soundsovielten Stelle nach dem Komma eine Abweichung gemessen?

Es ist sehr ratsam, im Zusammenhang mit diesen Fragen über das Prinzip des Kontinuierlichen in Form der reellen Zahlen nachzudenken.

Gruß, Diophant

Bezug
                
Bezug
Stetige Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:43 Di 27.05.2014
Autor: Musikuss

Danke für die schnelle Antwort!

> Aber deine Frage zielt ja eher auf das Grundverständnis.
> Nehmen wir an, die Länge einer bestimmten Schraubensorte
> wäre bspw. normalverteilt. Jetzt entnimmt man einer
> Stichprobe dieser Schraubensorte eine Schraube und misst
> und sagt: aha, die hat genau die Soll-Länge, also den
> Mittelwert der Verteilung. Jetzt frage dich: wenn man die
> Schraube mit immer genaueren Messinstrumenten vermessen
> würde, was denkst du: würde es bei dieser exakten Messung
> bleiben oder würde nicht doch irgendwann an der
> soundsovielten Stelle nach dem Komma eine Abweichung
> gemessen?

Ich beschäftige mich gerade mit der Exponentialverteilung.
Lässt sich in dem Zusammenhang bspw. sagen, dass die Wahrscheinlichkeit einen bestimmten Wert/Zeitpunkt zw. zwei Telefonanrufen zu bestimmen = 0 ist, da man ja nicht nur von Stunden und Minuten, sondern immer kleineren Zeiteinheiten ausgeht und somit auf keinen endlichen Wert trifft?

Bezug
                        
Bezug
Stetige Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:48 Di 27.05.2014
Autor: Diophant

Hallo,

> Danke für die schnelle Antwort!

>

> > Aber deine Frage zielt ja eher auf das Grundverständnis.
> > Nehmen wir an, die Länge einer bestimmten Schraubensorte
> > wäre bspw. normalverteilt. Jetzt entnimmt man einer
> > Stichprobe dieser Schraubensorte eine Schraube und misst
> > und sagt: aha, die hat genau die Soll-Länge, also den
> > Mittelwert der Verteilung. Jetzt frage dich: wenn man die
> > Schraube mit immer genaueren Messinstrumenten vermessen
> > würde, was denkst du: würde es bei dieser exakten Messung
> > bleiben oder würde nicht doch irgendwann an der
> > soundsovielten Stelle nach dem Komma eine Abweichung
> > gemessen?

>

> Ich beschäftige mich gerade mit der
> Exponentialverteilung.
> Lässt sich in dem Zusammenhang bspw. sagen, dass die
> Wahrscheinlichkeit einen bestimmten Wert/Zeitpunkt zw. zwei
> Telefonanrufen zu bestimmen = 0 ist, da man ja nicht nur
> von Stunden und Minuten, sondern immer kleineren
> Zeiteinheiten ausgeht und somit auf keinen endlichen Wert
> trifft?

Ja: P(X=c)=0 gilt für jede stetige Verteilung!

Gruß, Diophant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]